亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mammography-based Deep Learning for Breast Cancer Risk Assessment for Supplemental MRI Screening

医学 乳腺癌 乳腺摄影术 梅德林 乳房成像 医学物理学 内科学 肿瘤科 家庭医学 癌症 政治学 法学
作者
Min Sun Bae
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (3)
标识
DOI:10.1148/radiol.232226
摘要

HomeRadiologyVol. 308, No. 3 PreviousNext Reviews and CommentaryEditorialMammography-based Deep Learning for Breast Cancer Risk Assessment for Supplemental MRI ScreeningMin Sun Bae Min Sun Bae Author AffiliationsFrom the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, Gyeonggi-do 15355, Republic of Korea.Address correspondence to the author (email: [email protected]).Min Sun Bae Published Online:Sep 19 2023https://doi.org/10.1148/radiol.232226MoreSectionsFull textPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In References1. Pashayan N, Antoniou AC, Ivanus U, et al. Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nat Rev Clin Oncol 2020;17(11):687–705. [Published correction appears in Nat Rev Clin Oncol 2020;17(11):716.] Crossref, Medline, Google Scholar2. Saccarelli CR, Bitencourt AGV, Morris EA. Is it the era for personalized screening? Radiol Clin North Am 2021;59(1):129–138. Crossref, Medline, Google Scholar3. Barke LD, Freivogel ME. Breast cancer risk assessment models and high-risk screening. Radiol Clin North Am 2017;55(3):457–474. Crossref, Medline, Google Scholar4. Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R. A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 2019;292(1):60–66. Link, Google Scholar5. Arasu VA, Habel LA, Achacoso NS, et al. Comparison of mammography AI algorithms with a clinical risk model for 5-year breast cancer risk prediction: an observational study. Radiology 2023;307(5):e222733. Link, Google Scholar6. Lehman CD, Mercaldo S, Lamb LR, et al. Deep learning vs traditional breast cancer risk models to support risk-based mammography screening. J Natl Cancer Inst 2022;114(10):1355–1363. Crossref, Medline, Google Scholar7. Gao Y, Reig B, Heacock L, Bennett DL, Heller SL, Moy L. Magnetic resonance imaging in screening of breast cancer. Radiol Clin North Am 2021;59(1):85–98. Crossref, Medline, Google Scholar8. Wernli KJ, DeMartini WB, Ichikawa L, et al; Breast Cancer Surveillance Consortium. Patterns of breast magnetic resonance imaging use in community practice. JAMA Intern Med 2014;174(1):125–132. Crossref, Medline, Google Scholar9. Lamb LR, Mercaldo SF, Ghaderi KF, Carney A, Lehman CD. Comparison of the diagnostic accuracy of mammogram-based deep learning and traditional breast cancer risk models in patients who underwent supplemental screening with MRI. Radiology 2023;308(3):e223077. Google Scholar10. Mann RM, Sechopoulos I. Risk prediction in mammography: detecting cancers before they become clinically apparent. Radiology 2023;307(5):e231137. Link, Google ScholarArticle HistoryReceived: Aug 23 2023Revision requested: Aug 24 2023Revision received: Aug 25 2023Accepted: Aug 28 2023Published online: Sept 19 2023 FiguresReferencesRelatedDetailsAccompanying This ArticleComparison of the Diagnostic Accuracy of Mammogram-based Deep Learning and Traditional Breast Cancer Risk Models in Patients Who Underwent Supplemental Screening with MRISep 19 2023RadiologyRecommended Articles Comparison of the Diagnostic Accuracy of Mammogram-based Deep Learning and Traditional Breast Cancer Risk Models in Patients Who Underwent Supplemental Screening with MRIRadiology2023Volume: 308Issue: 3Invited Commentary: Breast Cancer Risk Assessment and Screening Strategies—What’s New?RadioGraphics2020Volume: 40Issue: 4pp. 937-940Sustained Benefits of Abbreviated Breast MRI on Consecutive Screening RoundsRadiology2021Volume: 299Issue: 1pp. 84-85Supplemental Breast Cancer Screening in Women with Dense Breasts and Negative Mammography: A Systematic Review and Meta-AnalysisRadiology2023Volume: 306Issue: 3Breast Cancer Risk Prediction Using Deep LearningRadiology2021Volume: 301Issue: 3pp. 559-560See More RSNA Education Exhibits Next Top Model: An Overview of Breast Cancer Risk Assessment ModelsDigital Posters2022Breast Cancer Disparities that Affect Black WomenDigital Posters2022Let’s Talk about Next-Generation Breast Cancer Screening Programs: How Should We Do? What Should We Use?Digital Posters2020 RSNA Case Collection Ductal carcinoma in situRSNA Case Collection2020Ductal Carcinoma In SituRSNA Case Collection2022Inflammatory breast cancerRSNA Case Collection2020 Vol. 308, No. 3 Metrics Altmetric Score PDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
h0jian09完成签到,获得积分10
15秒前
领导范儿应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
26秒前
30秒前
不胜玖完成签到 ,获得积分10
55秒前
清秀灵薇完成签到,获得积分10
1分钟前
一只榴莲发布了新的文献求助10
1分钟前
1分钟前
搜集达人应助一只榴莲采纳,获得10
1分钟前
1分钟前
zzzjh发布了新的文献求助10
1分钟前
11发布了新的文献求助10
1分钟前
11完成签到,获得积分10
1分钟前
kkk完成签到 ,获得积分10
1分钟前
辛勤夜柳发布了新的文献求助30
2分钟前
英姑应助苏打采纳,获得10
2分钟前
2分钟前
ljz发布了新的文献求助10
2分钟前
Li应助科研通管家采纳,获得10
2分钟前
bc应助科研通管家采纳,获得30
2分钟前
Li应助科研通管家采纳,获得10
2分钟前
2分钟前
绝尘发布了新的文献求助10
2分钟前
2分钟前
欣欣发布了新的文献求助10
2分钟前
2分钟前
一只榴莲发布了新的文献求助10
2分钟前
NexusExplorer应助一只榴莲采纳,获得10
3分钟前
璇别关注了科研通微信公众号
3分钟前
星星完成签到,获得积分20
3分钟前
3分钟前
璇别发布了新的文献求助10
3分钟前
科研通AI2S应助Jeongin采纳,获得10
3分钟前
ljz完成签到,获得积分20
4分钟前
骆十八完成签到,获得积分10
4分钟前
ljz发布了新的文献求助10
4分钟前
璇别完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346432
关于积分的说明 10329326
捐赠科研通 3062993
什么是DOI,文献DOI怎么找? 1681307
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714