GIaNt: Protein-Ligand Binding Affinity Prediction via Geometry-Aware Interactive Graph Neural Network

计算机科学 理论计算机科学 图形 人工神经网络 人工智能
作者
Shuangli Li,Jingbo Zhou,Tong Xu,Liang Huang,Fan Wang,Haoyi Xiong,Weili Huang,Dejing Dou,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (5): 1991-2008 被引量:3
标识
DOI:10.1109/tkde.2023.3314502
摘要

Drug discovery often relies on the successful prediction of protein-ligand binding affinity. Recent advances have shown great promise in applying graph neural networks (GNNs) for better affinity prediction by learning the representations of protein-ligand complexes. However, existing solutions usually treat protein-ligand complexes as topological graph data, thus the 3D geometry-based biomolecular structural information is not fully utilized. The essential intermolecular interactions with long-range dependencies, including type-wise interactions and molecule-wise interactions, are also neglected in GNN models. To this end, we propose a geometry-aware interactive graph neural network ( GIaNt ) which consists of two components: 3D geometric graph learning network ( 3DG-Net ) and pairwise interactive learning network ( Pi-Net ). Specifically, 3DG-Net iteratively performs the node-edge interaction process to update embeddings of nodes and edges in a unified framework while preserving the 3D geometric factors among atoms, including spatial distance, polar angle and dihedral angle information in 3D space. Moreover, Pi-Net is adopted to incorporate both element type-level and molecule-level interactions. Specially, interactive edges are gathered with a subsequent reconstruction loss to reflect the global type-level interactions. Meanwhile, a pairwise attentive pooling scheme is designed to identify the critical interactive atoms for complex representation learning from a semantic view. An exhaustive experimental study on two benchmarks verifies the superiority of GIaNt .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
残忆完成签到 ,获得积分10
1秒前
Zn1完成签到,获得积分10
1秒前
叶绍辉发布了新的文献求助10
1秒前
煎蛋发布了新的文献求助10
2秒前
6秒前
煎蛋完成签到,获得积分10
7秒前
Betty完成签到,获得积分10
8秒前
过时的映安完成签到 ,获得积分10
8秒前
Koko发布了新的文献求助10
11秒前
11秒前
joleisalau完成签到,获得积分10
12秒前
12秒前
Timezzz完成签到,获得积分10
14秒前
严西完成签到,获得积分10
16秒前
有长进发布了新的文献求助10
16秒前
科目三应助谷雨采纳,获得10
17秒前
Orange应助稳重秋寒采纳,获得10
18秒前
蜜HHH完成签到 ,获得积分10
20秒前
小也发布了新的文献求助10
20秒前
cdercder应助陌路采纳,获得30
21秒前
英俊的铭应助无私的薯片采纳,获得10
22秒前
22秒前
小牛同志完成签到,获得积分10
24秒前
26秒前
28秒前
qqqqqqq完成签到,获得积分20
28秒前
学术通zzz发布了新的文献求助10
30秒前
归尘发布了新的文献求助20
34秒前
34秒前
谷雨发布了新的文献求助10
35秒前
36秒前
赘婿应助qqqqqqq采纳,获得10
38秒前
乐乐完成签到 ,获得积分10
39秒前
叶绍辉完成签到,获得积分10
39秒前
简简单单完成签到 ,获得积分10
40秒前
40秒前
41秒前
43秒前
tiantian完成签到,获得积分10
45秒前
子非鱼完成签到 ,获得积分10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214551
捐赠科研通 3038674
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315