Black-Box Attack-Based Security Evaluation Framework for Credit Card Fraud Detection Models

计算机科学 黑匣子 构造(python库) 机器学习 钥匙(锁) 人工智能 大数据 接头(建筑物) 计算机安全 数据挖掘 工程类 建筑工程 程序设计语言
作者
Jin Xiao,Yuhang Tian,Yanlin Jia,Xiaoyi Jiang,Lean Yu,Shouyang Wang
出处
期刊:Informs Journal on Computing 卷期号:35 (5): 986-1001 被引量:11
标识
DOI:10.1287/ijoc.2023.1297
摘要

The security of credit card fraud detection (CCFD) models based on machine learning is important but rarely considered in the existing research. To this end, we propose a black-box attack-based security evaluation framework for CCFD models. Under this framework, the semisupervised learning technique and transfer-based black-box attack are combined to construct two versions of a semisupervised transfer black-box attack algorithm. Moreover, we introduce a new nonlinear optimization model to generate the adversarial examples against CCFD models and a security evaluation index to quantitatively evaluate the security of them. Computing experiments on two real data sets demonstrate that, facing the adversarial examples generated by the proposed attack algorithms, all six supervised models considered largely lose their ability to identify the fraudulent transactions, whereas the two unsupervised models are less affected. This indicates that the CCFD models based on supervised machine learning may possess substantial security risks. In addition, the evaluation results for the security of the models generate important managerial implications that help banks reasonably evaluate and enhance the model security. History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning. Funding: This work was supported in part by the National Natural Science Foundation of China [Grants 72171160 and 71988101], Key Program of National Natural Science Foundation of China and Quebec Research Foundation (NSFC-FRQ) Joint Project [Grant 7191101304], Key Program of NSFC-FRQSC Joint Project [Grant 72061127002], Excellent Youth Foundation of Sichuan Province [Grant 2020JDJQ0021], and National Leading Talent Cultivation Project of Sichuan University [Grant SKSYL2021-03]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.1297 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0076 ) at ( http://dx.doi.org/10.5281/zenodo.7631457 ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所就欧克发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
深情安青应助圣晟胜采纳,获得10
2秒前
111发布了新的文献求助10
2秒前
乐乐应助汪蔓蔓采纳,获得10
3秒前
4秒前
LXZ发布了新的文献求助10
4秒前
TEDDY发布了新的文献求助10
4秒前
4秒前
酷波er应助TOJNRU采纳,获得10
5秒前
小李发布了新的文献求助10
5秒前
虚心焦发布了新的文献求助10
5秒前
李子发布了新的文献求助30
6秒前
Sinner发布了新的文献求助30
7秒前
8秒前
虞yu完成签到 ,获得积分10
9秒前
传奇3应助shy采纳,获得10
9秒前
10秒前
10秒前
TINASO关注了科研通微信公众号
11秒前
量子星尘发布了新的文献求助10
12秒前
shenyanlei发布了新的文献求助10
13秒前
七叶树完成签到,获得积分10
14秒前
清爽老九发布了新的文献求助50
15秒前
15秒前
joleisalau发布了新的文献求助10
15秒前
16秒前
NexusExplorer应助欣慰的盼芙采纳,获得10
16秒前
16秒前
17秒前
嘟嘟嘟完成签到,获得积分10
17秒前
Sisi完成签到 ,获得积分10
17秒前
李子完成签到,获得积分10
17秒前
曙光完成签到,获得积分0
18秒前
AneyWinter66应助jiangshanshan采纳,获得10
18秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606007
求助须知:如何正确求助?哪些是违规求助? 4690472
关于积分的说明 14863982
捐赠科研通 4703318
什么是DOI,文献DOI怎么找? 2542392
邀请新用户注册赠送积分活动 1507915
关于科研通互助平台的介绍 1472168