计算机科学
水准点(测量)
人工智能
对象(语法)
边界(拓扑)
目标检测
代表(政治)
编码(集合论)
深度学习
GSM演进的增强数据速率
计算机视觉
任务(项目管理)
语义学(计算机科学)
模式识别(心理学)
数学
工程类
集合(抽象数据类型)
程序设计语言
地理
数学分析
大地测量学
法学
系统工程
政治
政治学
作者
Yujia Sun,Shuo Wang,Chenglizhao Chen,Tian-Zhu Xiang
出处
期刊:Cornell University - arXiv
日期:2022-07-02
被引量:23
标识
DOI:10.48550/arxiv.2207.00794
摘要
Camouflaged object detection (COD), segmenting objects that are elegantly blended into their surroundings, is a valuable yet challenging task. Existing deep-learning methods often fall into the difficulty of accurately identifying the camouflaged object with complete and fine object structure. To this end, in this paper, we propose a novel boundary-guided network (BGNet) for camouflaged object detection. Our method explores valuable and extra object-related edge semantics to guide representation learning of COD, which forces the model to generate features that highlight object structure, thereby promoting camouflaged object detection of accurate boundary localization. Extensive experiments on three challenging benchmark datasets demonstrate that our BGNet significantly outperforms the existing 18 state-of-the-art methods under four widely-used evaluation metrics. Our code is publicly available at: https://github.com/thograce/BGNet.
科研通智能强力驱动
Strongly Powered by AbleSci AI