Short-term vehicle speed prediction based on BiLSTM-GRU model considering driver heterogeneity

过度拟合 人工神经网络 计算机科学 过程(计算) 人工智能 聚类分析 期限(时间) 航程(航空) 机器学习 数据挖掘 智能交通系统 工程类 操作系统 物理 航空航天工程 土木工程 量子力学
作者
Qinyin Li,Rongjun Cheng,Hongxia Ge
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:610: 128410-128410 被引量:34
标识
DOI:10.1016/j.physa.2022.128410
摘要

Short-term vehicle speed prediction is an essential part of Intelligent Transportation Systems (ITS), which influences the critical parameter for high-level energy management of electric vehicles. Accurate predictions of vehicle speed contribute to take timely countermeasures and enhance energy application efficiency. Deep learning is a hot research method in current prediction, which can already accurately predict vehicle speed. However, the prediction accuracy of the fixed algorithm is difficult to further improve after reaching a certain accuracy, and overfitting may occur in the process of improving the prediction accuracy. At the same time, driving behavior of drivers will affect the prediction effect to varying degrees. In order to verify the difference of speed prediction under different driving characteristics, a hybrid prediction model K-BiLSTM-GRU is proposed, which is combined the adaptive ability of K-means to reasonably classify samples and the advantage of bidirectional long short-term memory network (BiLSTM) and gated recurrent unit (GRU) to solve long-range dependencies and reduce overfitting. Firstly, a two-step method is used to denoise the NGSIM dataset, and K-means clustering method is used to cluster the data related to the car-following (CF) teams in the selected lane. After obtaining three types of drivers, the driving characteristics of the different types of drivers are analyzed. Secondly, the construction, training and prediction of the neural network is completed in the deep learning framework Keras. Finally, the model performance of verified by vehicle speed prediction through the actual speed dataset. The proposed hybrid model is compared with lots of current mainstream deep learning algorithms, the effectiveness of the K-BiLSTM-GRU method is validated. Meanwhile, the prediction performance of timid drivers is better than that of aggressive and neutral types. The results may provide some potential insights for vehicle speed prediction and electric vehicle energy consumption about different driving characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11哥应助年轻的千筹采纳,获得20
刚刚
怕黑香菇完成签到,获得积分20
1秒前
1秒前
阳光绿柏完成签到,获得积分10
1秒前
怡然幼枫发布了新的文献求助10
1秒前
怡然幼枫发布了新的文献求助10
2秒前
怡然幼枫发布了新的文献求助80
2秒前
yonglong完成签到,获得积分10
2秒前
怡然幼枫发布了新的文献求助10
2秒前
2秒前
3秒前
sss发布了新的文献求助10
3秒前
taotie完成签到,获得积分10
3秒前
3秒前
DKF发布了新的文献求助10
3秒前
哈哈哈发布了新的文献求助10
3秒前
怡然幼枫发布了新的文献求助10
4秒前
怡然幼枫发布了新的文献求助10
4秒前
怡然幼枫发布了新的文献求助10
4秒前
怡然幼枫发布了新的文献求助10
4秒前
怡然幼枫发布了新的文献求助10
4秒前
wbb完成签到 ,获得积分10
5秒前
Marvin完成签到,获得积分20
5秒前
小米粥完成签到,获得积分10
5秒前
学茶小白发布了新的文献求助10
6秒前
乌云乌云快走开完成签到,获得积分10
6秒前
李健应助平淡冬亦采纳,获得10
6秒前
田様应助美丽的裘采纳,获得10
6秒前
weiping完成签到,获得积分10
6秒前
科研通AI2S应助不困采纳,获得10
6秒前
xiaohan完成签到,获得积分10
7秒前
害怕的西牛完成签到,获得积分10
7秒前
7秒前
百甲完成签到,获得积分10
7秒前
ENG发布了新的文献求助10
7秒前
只只发布了新的文献求助10
8秒前
中华有为完成签到,获得积分10
8秒前
jiecao发布了新的文献求助10
8秒前
宇轩完成签到 ,获得积分10
10秒前
sss完成签到,获得积分10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785078
求助须知:如何正确求助?哪些是违规求助? 3330527
关于积分的说明 10246774
捐赠科研通 3045869
什么是DOI,文献DOI怎么找? 1671749
邀请新用户注册赠送积分活动 800834
科研通“疑难数据库(出版商)”最低求助积分说明 759675