An Ameliorated Denoising Scheme Based on Deep Learning for Φ-OTDR System With 41-km Detection Range

降噪 卷积神经网络 人工智能 算法 光时域反射计 计算机科学 小波 数学 模式识别(心理学) 光纤 光纤传感器 电信 渐变折射率纤维
作者
Sichen Li,Kun Liu,Junfeng Jiang,Tianhua Xu,Zhenyang Ding,Zhenshi Sun,Yuelang Huang,Kang Xue,Xibo Jin,Tiegen Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (20): 19666-19674 被引量:21
标识
DOI:10.1109/jsen.2022.3202963
摘要

In recent years, denoising methods for improving the performance of the phase-sensitive optical time-domain reflectometry ( $\Phi $ -OTDR) system have been restricted by the deficiencies of time-consuming and limited denoising effect. In this work, a trained convolutional neural network (CNN)-based image denoising model is proposed to greatly eliminate the unwanted noises in the $\Phi $ -OTDR-based sensing system. First, the given Rayleigh backscattering traces are acquired and preprocessed through adjacent differentiation and two-dimensionalization. Second, the 2-D preprocessed data are converted into a noisy gray-scale image and sent into the CNN model for training and testing. Third, the CNN model outputs a corresponding denoised gray-scale image, which can be further analyzed by reconverting it into a series of denoised Rayleigh backscattering traces. Finally, a series of experiments are carried out to demonstrate the effectiveness of the proposed denoising scheme. Experimental results show that, in allusion to the vibration signal with different intensities along the 41-km optical sensing fiber, the trained CNN model achieves a signal-to-noise ratio (SNR) enhancement of about 20 dB. Compared with the conventional methods based on wavelet and empirical mode decomposition (EMD), the proposed denoising scheme demonstrates characteristics of robustness, well spatial resolution reservation, and high efficiency. It is believed that the trained CNN model has great potential to be deployed on the $\Phi $ -OTDR system for real-time denoising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助冯瑾然采纳,获得10
1秒前
liu完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
汉堡包应助研友_nqy5jn采纳,获得10
2秒前
Ava应助xjc23采纳,获得10
2秒前
由富完成签到,获得积分10
3秒前
zixiao发布了新的文献求助20
3秒前
3秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
英俊的铭应助天天向上采纳,获得10
4秒前
WB87应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
keyan111应助科研通管家采纳,获得10
4秒前
4秒前
WB87应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
zzzz发布了新的文献求助30
4秒前
4秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得30
5秒前
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
renzhiqiang发布了新的文献求助20
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
qqxs完成签到,获得积分20
5秒前
白糖完成签到,获得积分10
5秒前
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
KARRY发布了新的文献求助10
5秒前
思源应助西子阳采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5445655
求助须知:如何正确求助?哪些是违规求助? 4554886
关于积分的说明 14248876
捐赠科研通 4477167
什么是DOI,文献DOI怎么找? 2453241
邀请新用户注册赠送积分活动 1443922
关于科研通互助平台的介绍 1419974