A self-adaptive DRSN-GPReLU for bearing fault diagnosis under variable working conditions

计算机科学 稳健性(进化) 人工智能 残余物 参数统计 人工神经网络 噪音(视频) 模式识别(心理学) 控制理论(社会学) 算法 数学 图像(数学) 控制(管理) 化学 统计 基因 生物化学
作者
Zhijin Zhang,Chunlei Zhang,Xin Zhang,Lei Chen,Huaitao Shi,He Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (12): 124005-124005 被引量:12
标识
DOI:10.1088/1361-6501/ac86e3
摘要

Abstract Recently, deep learning has been widely used for intelligent fault diagnosis of rolling bearings due to its no-mankind feature extraction capability. The majority of intelligent diagnosis methods are based on the assumption that the data collected is from constant working conditions. However, rolling bearings often operate under variable working conditions in the real diagnosis scenario, which reduces the generalization capability of the diagnosis model. To solve this problem, a self-adaptive deep residual shrinkage network with a global parametric rectifier linear unit (DRSN-GPReLU) is proposed in this paper. First, the DRSN is used as the basic architecture to improve the anti-noise ability of the proposed method. Then, a novel activation function—the GPReLU—is developed, which can achieve better intra-class compactness for vibration signals, and the inter-class samples are better mapped into remote areas. Finally, a sub-network based on the attention mechanism is designed to automatically infer the slope of the GPReLU. Various experimental results demonstrate that the DRSN-GPReLU can realize better performance compared with traditional methods under variable working conditions, and has better robustness under noise interference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一人之下完成签到,获得积分10
1秒前
木子完成签到,获得积分10
2秒前
2秒前
Cold完成签到,获得积分10
2秒前
成事在人307完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
mislight发布了新的文献求助10
4秒前
欣欣完成签到,获得积分10
4秒前
ATOM发布了新的文献求助10
4秒前
4秒前
我是老大应助人人人采纳,获得10
4秒前
赘婿应助wwww采纳,获得10
5秒前
花花完成签到,获得积分10
5秒前
6秒前
6秒前
爱笑宛亦完成签到,获得积分10
6秒前
yilin完成签到,获得积分10
7秒前
顺利毕业发布了新的文献求助10
7秒前
8秒前
阿七完成签到,获得积分10
8秒前
8秒前
田様应助foceman采纳,获得10
8秒前
xl发布了新的文献求助10
8秒前
隐形盼海发布了新的文献求助20
9秒前
9秒前
科研通AI5应助Peri采纳,获得10
9秒前
大模型应助fd163c采纳,获得30
9秒前
WLM发布了新的文献求助10
10秒前
lalal完成签到,获得积分10
10秒前
搜集达人应助芝士肉肉丸采纳,获得10
10秒前
10秒前
韶冥茗发布了新的文献求助10
11秒前
wwv完成签到,获得积分20
11秒前
11秒前
aliu完成签到,获得积分10
11秒前
SciGPT应助Dfish采纳,获得10
11秒前
泡泡球完成签到,获得积分10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cardiopulmonary Bypass 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837924
求助须知:如何正确求助?哪些是违规求助? 3380044
关于积分的说明 10512173
捐赠科研通 3099680
什么是DOI,文献DOI怎么找? 1707179
邀请新用户注册赠送积分活动 821498
科研通“疑难数据库(出版商)”最低求助积分说明 772667