A Model for Lumbar EMG Signal Recognition Based on Stacking Integration Learning

人工智能 过度拟合 计算机科学 模式识别(心理学) 特征(语言学) 随机森林 信号(编程语言) 人体躯干 特征提取 机器学习 语音识别 人工神经网络 哲学 解剖 医学 程序设计语言 语言学
作者
Shuhong Cheng,Liyuan Wu,Shijun Zhang,Dianfan Zhang,Fei Liu,Hongbo Wang,Ping Xie
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (4): 3766-3775 被引量:7
标识
DOI:10.1109/jsen.2022.3229363
摘要

Human waist action recognition based on surface electromyography (sEMG) signals is a complex pattern recognition problem, the difficulty of which lies in the coupling of EMG signals between different actions, and a single model cannot effectively utilize the feature information to achieve high accuracy of action recognition. To this end, this article proposes a stacking integration-based EMG signal model for the waist, which introduces the stacking integration framework into EMG signal recognition for the first time, using ${K}$ -nearest neighbor (KNN), random forest (RF)-master, XGboost, and LightGBM algorithms as base learners and decision tree (DT) model as a meta-learner to construct the integrated model. The complex feature information contained in the EMG signal is correlated with different waist movements to construct feature datasets with high correlation, and the training set is divided by using the fivefold cross-validation method to reduce the overfitting problem during the repeated training of the integrated model. Using the integrated model proposed in this article, the generalization ability of the model can be effectively improved and the recognition accuracy of EMG signals can be improved. According to experiments, the model has an average accuracy of 94.98% for the recognition of six waist movements in normal person, and the accuracy of recognition of the six movements in patients with lumbar strain was 91.5% on average, which is about 6% better than a single model, and the recognition speed can be within 150 ms, meeting the requirements of real-time recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮克斯完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
7秒前
qiao发布了新的文献求助20
9秒前
zz发布了新的文献求助10
11秒前
11秒前
11秒前
凉小远完成签到,获得积分10
12秒前
科研通AI5应助只只呀采纳,获得10
12秒前
含蓄半邪应助luca采纳,获得30
13秒前
14秒前
14秒前
1223发布了新的文献求助10
14秒前
Lxjie发布了新的文献求助10
14秒前
冷艳小刺猬完成签到 ,获得积分10
15秒前
cherish发布了新的文献求助10
16秒前
DavidXu发布了新的文献求助10
18秒前
橙子发布了新的文献求助10
19秒前
20秒前
ypppp发布了新的文献求助10
20秒前
阿泽发布了新的文献求助10
20秒前
21秒前
21秒前
不是一只杨完成签到,获得积分10
22秒前
乐观的颦发布了新的文献求助10
23秒前
怡然万声发布了新的文献求助10
24秒前
辣辣发布了新的文献求助10
26秒前
ypppp完成签到,获得积分10
26秒前
27秒前
Lxjie完成签到,获得积分10
29秒前
小马甲应助polarisblue采纳,获得10
29秒前
29秒前
大模型应助PigaChu采纳,获得10
30秒前
DavidXu完成签到,获得积分10
31秒前
阔达幼珊发布了新的文献求助10
33秒前
大模型应助無边采纳,获得10
34秒前
34秒前
CodeCraft应助呆萌的太阳采纳,获得10
38秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351587
关于积分的说明 10354846
捐赠科研通 3067401
什么是DOI,文献DOI怎么找? 1684517
邀请新用户注册赠送积分活动 809780
科研通“疑难数据库(出版商)”最低求助积分说明 765635