已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Data Cleansing for GANs

数据清理 计算机科学 工程类 运营管理 数据质量 公制(单位)
作者
Naoyuki Terashita,Hiroki Ohashi,Satoshi Hara
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2025.3529540
摘要

As the application of generative adversarial networks (GANs) expands, it becomes increasingly critical to develop a unified approach that improves performance across various generative tasks. One effective strategy that applies to any machine learning task is identifying harmful instances, whose removal improves the performance. While previous studies have successfully estimated these harmful training instances in supervised settings, their approaches are not easily applicable to GANs. The challenge lies in two requirements of the previous approaches that do not apply to GANs. First, previous approaches require that the absence of a training instance directly affects the parameters. However, in the training for GANs, the instances do not directly affect the generator's parameters since they are only fed into the discriminator. Second, previous approaches assume that the change in loss directly quantifies the harmfulness of the instance to a model's performance, while common types of GAN losses do not always reflect the generative performance. To overcome the first challenge, we propose influence estimation methods that use the Jacobian of the generator's gradient with respect to the discriminator's parameters (and vice versa). Such a Jacobian represents the indirect effect between two models: how removing an instance from the discriminator's training changes the generator's parameters. Second, we propose an instance evaluation scheme that measures the harmfulness of each training instance based on how a GAN evaluation metric e.g., inception score (IS) is expected to change by the instance's removal. Furthermore, we demonstrate that removing the identified harmful instances significantly improves the generative performance on various GAN evaluation metrics. The code is available at https://github.com/hitachi-rd-cv/data-cleansing-for-gans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yeluoyezhi发布了新的文献求助10
刚刚
1秒前
王哥完成签到,获得积分10
4秒前
zzz关闭了zzz文献求助
4秒前
les3发布了新的文献求助10
6秒前
甜美姒发布了新的文献求助10
6秒前
zzt完成签到,获得积分10
7秒前
7秒前
白子墨完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
苯偶姻完成签到,获得积分10
10秒前
WANGGE完成签到 ,获得积分10
10秒前
12秒前
les3完成签到,获得积分10
12秒前
13秒前
传奇3应助柚子采纳,获得10
13秒前
hx发布了新的文献求助10
13秒前
爆米花应助minet采纳,获得10
13秒前
圈儿多尼完成签到,获得积分10
16秒前
17秒前
zwy发布了新的文献求助10
18秒前
李健应助喝牛奶de猪采纳,获得10
19秒前
19秒前
20秒前
20秒前
鲸落完成签到,获得积分10
22秒前
orixero应助morena采纳,获得10
22秒前
Zhe发布了新的文献求助10
23秒前
tomato完成签到 ,获得积分10
24秒前
27秒前
领导范儿应助yk采纳,获得10
27秒前
30秒前
冒险寻羊完成签到,获得积分10
30秒前
hello完成签到,获得积分20
30秒前
小蘑菇应助懒羊羊采纳,获得10
31秒前
31秒前
32秒前
天天快乐应助Zhe采纳,获得10
33秒前
终抵星空完成签到,获得积分10
33秒前
33秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3889105
求助须知:如何正确求助?哪些是违规求助? 3431382
关于积分的说明 10773510
捐赠科研通 3156374
什么是DOI,文献DOI怎么找? 1743099
邀请新用户注册赠送积分活动 841486
科研通“疑难数据库(出版商)”最低求助积分说明 785966