Artifact-free phase reconstruction for differential interference contrast microscopy based on deep learning

微分干涉显微术 光学 干涉显微镜 干扰(通信) 相衬显微术 工件(错误) 相位成像 显微镜 相(物质) 对比度(视觉) 相位恢复 相位对比成像 材料科学 人工智能 计算机科学 傅里叶变换 物理 电信 频道(广播) 量子力学
作者
Chengxin Zhou,Yuheng Wang,Yue Liu,Kun Yu,Yufang Liu,Liyun Zhong,Chao Zhuang,Xiaoxu Lü
出处
期刊:Optics Express [The Optical Society]
卷期号:33 (5): 11887-11887
标识
DOI:10.1364/oe.547903
摘要

Differential interference contrast (DIC) microscopy, as a label-free, high-contrast, and strong capacity for optical section imaging method, is widely used in routine examinations of cells or tissues. However, due to the inherent non-linearity between DIC image intensity and the phase gradient of a specimen, it is difficult to obtain the quantitative phase image accurately. Moreover, although numerical integration has been tried as a means to reconstruct the specimen phase, the unknown integral constant and the sensitivity to gradient noise lead to insufficient phase image results (obscured by severe linear artifacts). Here, we propose a data-driven approach to achieve artifact-free, high-precision and fast reconstruction of the specimen phase. This method initially uses the specimen phase extracted by digital holography and constructs the “specimen phase-differential phase” training database based on the DIC microscopic imaging model. Subsequently, the Pix2Pix GAN network model is employed, where an appropriate loss function and gradient back propagation algorithm are implemented to allow the network to update the weight parameters automatically. This process enables the trained network model to effectively reflect the mapping relationship between the specimen and differential phase. With a trained deep neural network, high-precision artifact-free reconstruction of the specimen phase can be achieved using only a differential phase image along a single shearing direction. We demonstrate the effectiveness and applicability of the proposed method by quantitative phase imaging of polystyrene spherical crown and HeLa cells. The experimental results show that the model can quickly realize the high-fidelity and artifact-free reconstruction of the specimen phase, and also has excellent anti-noise performance. It provides a promising technology for achieving high spatial sensitivity detection of quantitative DIC microscopic imaging technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
able发布了新的文献求助20
刚刚
1秒前
1122完成签到,获得积分10
1秒前
xx完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
Seven发布了新的文献求助10
4秒前
5秒前
蓝天发布了新的文献求助10
5秒前
8秒前
8秒前
黄蛋黄完成签到,获得积分10
9秒前
旧月完成签到,获得积分10
9秒前
qq2432927085完成签到,获得积分20
10秒前
10秒前
10秒前
11秒前
科研通AI6.1应助sci来采纳,获得10
11秒前
skylar完成签到,获得积分10
13秒前
14秒前
14秒前
完美世界应助温茶采纳,获得30
16秒前
呆呆兽发布了新的文献求助10
16秒前
小白完成签到,获得积分20
17秒前
17秒前
19秒前
最佳完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
22秒前
冯昊完成签到,获得积分10
22秒前
22秒前
xx发布了新的文献求助10
23秒前
23秒前
jackxxx完成签到,获得积分10
23秒前
迅速平灵发布了新的文献求助10
23秒前
24秒前
bkagyin应助釉荼采纳,获得30
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769694
求助须知:如何正确求助?哪些是违规求助? 5581034
关于积分的说明 15422447
捐赠科研通 4903349
什么是DOI,文献DOI怎么找? 2638182
邀请新用户注册赠送积分活动 1586070
关于科研通互助平台的介绍 1541180