亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artifact-free phase reconstruction for differential interference contrast microscopy based on deep learning

微分干涉显微术 光学 干涉显微镜 干扰(通信) 相衬显微术 工件(错误) 相位成像 显微镜 相(物质) 对比度(视觉) 相位恢复 相位对比成像 材料科学 人工智能 计算机科学 傅里叶变换 物理 电信 频道(广播) 量子力学
作者
Chengxin Zhou,Yuheng Wang,Yue Liu,Kun Yu,Yufang Liu,Liyun Zhong,Chao Zhuang,Xiaoxu Lü
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:33 (5): 11887-11887
标识
DOI:10.1364/oe.547903
摘要

Differential interference contrast (DIC) microscopy, as a label-free, high-contrast, and strong capacity for optical section imaging method, is widely used in routine examinations of cells or tissues. However, due to the inherent non-linearity between DIC image intensity and the phase gradient of a specimen, it is difficult to obtain the quantitative phase image accurately. Moreover, although numerical integration has been tried as a means to reconstruct the specimen phase, the unknown integral constant and the sensitivity to gradient noise lead to insufficient phase image results (obscured by severe linear artifacts). Here, we propose a data-driven approach to achieve artifact-free, high-precision and fast reconstruction of the specimen phase. This method initially uses the specimen phase extracted by digital holography and constructs the “specimen phase-differential phase” training database based on the DIC microscopic imaging model. Subsequently, the Pix2Pix GAN network model is employed, where an appropriate loss function and gradient back propagation algorithm are implemented to allow the network to update the weight parameters automatically. This process enables the trained network model to effectively reflect the mapping relationship between the specimen and differential phase. With a trained deep neural network, high-precision artifact-free reconstruction of the specimen phase can be achieved using only a differential phase image along a single shearing direction. We demonstrate the effectiveness and applicability of the proposed method by quantitative phase imaging of polystyrene spherical crown and HeLa cells. The experimental results show that the model can quickly realize the high-fidelity and artifact-free reconstruction of the specimen phase, and also has excellent anti-noise performance. It provides a promising technology for achieving high spatial sensitivity detection of quantitative DIC microscopic imaging technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JackWang618完成签到,获得积分10
18秒前
笨笨山芙完成签到 ,获得积分10
33秒前
ahh完成签到 ,获得积分10
39秒前
满意人英完成签到,获得积分10
42秒前
45秒前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
DocChen发布了新的文献求助30
1分钟前
Dash完成签到 ,获得积分10
1分钟前
李明完成签到,获得积分10
1分钟前
2分钟前
chcmy完成签到 ,获得积分0
2分钟前
传奇3应助DocChen采纳,获得30
2分钟前
2分钟前
2分钟前
3分钟前
bruna发布了新的文献求助200
3分钟前
DocChen发布了新的文献求助30
3分钟前
打打应助DocChen采纳,获得10
3分钟前
Able完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
DocChen发布了新的文献求助10
3分钟前
4分钟前
科研通AI5应助DocChen采纳,获得30
4分钟前
4分钟前
4分钟前
4分钟前
霜叶完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
JoeyJin完成签到,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4718509
求助须知:如何正确求助?哪些是违规求助? 4079813
关于积分的说明 12616245
捐赠科研通 3783920
什么是DOI,文献DOI怎么找? 2090207
邀请新用户注册赠送积分活动 1116191
科研通“疑难数据库(出版商)”最低求助积分说明 993340