Rheological and Electro-Pitting Performance of Electric Vehicle Motor Greases with Various Nanoparticle Greases

润滑油 传动系 动力传动系统 往复运动 汽车工程 材料科学 机械工程 耐久性 内燃机 计算机科学 工艺工程 方位(导航) 复合材料 工程类 扭矩 人工智能 物理 热力学
作者
Jack R. Janik,Sudip Saha,Robert L. Jackson,G. Mills
出处
期刊:Journal of tribology [ASM International]
卷期号:: 1-40
标识
DOI:10.1115/1.4067489
摘要

Abstract As the performance and efficiency requirements of electric vehicles (EVs) continue to expand, the demand for advanced driveline lubricants has grown exponentially. Unlike traditional internal combustion engine (ICE) vehicles, EVs experience unique challenges, including increased acceleration and deceleration rates, higher operating speeds, and elevated drivetrain temperatures. Moreover, EV lubricants must endure exposure to damaging bearing currents, which can lead to morphological damage on bearing surfaces, such as electrical pitting. Addressing these challenges is critical to ensuring the longevity and reliability of EV components. This study aims to explore and validate innovative lubricant solutions tailored explicitly for EV applications. This work provides experimental validation of the capabilities of silver (Ag) and different concentrations of magnetic iron-oxide nanoparticles (NPs) in reducing damage through reciprocating rolling ball-on-disk tests. Additionally, an electrically conductive carbon black lithium-thickened grease was tested under comparable conditions. The significance of this research lies in its potential to revolutionize the EV lubricant industry by offering a robust solution to a prevalent problem. Successful implementation of nanoparticle-enhanced lubricants could lead to increased durability and efficiency of EV drivetrains, reducing maintenance costs and improving overall vehicle performance. This advancement aligns with the evolving demands of the EV market and sets a new standard for lubricant technology in electrified mobility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wanyin完成签到,获得积分10
刚刚
1秒前
Zhang完成签到,获得积分10
1秒前
1秒前
2秒前
浮游应助解语花采纳,获得10
2秒前
3秒前
科研通AI5应助Roy采纳,获得10
6秒前
6秒前
Junzhuo Zhou发布了新的文献求助10
6秒前
充电宝应助风趣水风采纳,获得10
6秒前
6秒前
于谋飞发布了新的文献求助10
6秒前
情怀应助kndfsfmf采纳,获得10
7秒前
爆米花应助美托洛尔采纳,获得20
7秒前
8秒前
千叶儿完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助100
9秒前
苏木完成签到,获得积分10
9秒前
乐乐应助素歌采纳,获得10
10秒前
starry完成签到 ,获得积分10
10秒前
李li发布了新的文献求助10
10秒前
11秒前
Ninico完成签到,获得积分10
11秒前
11秒前
隐形曼青应助萧凌雪采纳,获得10
11秒前
Jasper应助栗悟饭与龟波功采纳,获得10
11秒前
是盐的学术号吖完成签到 ,获得积分10
12秒前
今后应助jzt12138采纳,获得10
12秒前
13秒前
huakun发布了新的文献求助10
13秒前
14秒前
71完成签到,获得积分10
14秒前
顾矜应助陈子峰采纳,获得10
14秒前
大吉完成签到,获得积分10
14秒前
点击阿拉法监理规划完成签到,获得积分10
15秒前
15秒前
15秒前
QUU发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4679792
求助须知:如何正确求助?哪些是违规求助? 4056132
关于积分的说明 12542028
捐赠科研通 3750643
什么是DOI,文献DOI怎么找? 2071501
邀请新用户注册赠送积分活动 1100578
科研通“疑难数据库(出版商)”最低求助积分说明 980055