A Novel Frequency-Division Deep Learning Approach for Magnetotelluric Data Quality Enhancement

计算机科学 降噪 人工智能 噪音(视频) 频域 时频分析 模式识别(心理学) 信号(编程语言) 深度学习 信号处理 算法 电信 计算机视觉 雷达 图像(数学) 程序设计语言
作者
Nian Yu,Mingjie Ji,Chao Zhang,Yi Ye,Wei Zhou
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:: 1-86
标识
DOI:10.1190/geo2024-0451.1
摘要

High signal-to-noise ratio magnetotelluric (MT) data are crucial for accurately interpreting subsurface structures. Recently, deep learning has become popular for MT denoising due to its ability to avoid parameter tuning and enable real-time processing. These methods typically fit or predict signals in noisy segments after identifying and segmenting signal and noise in the time domain. However, these methods struggle to preserve both low- and high-frequency signals effectively due to high noise levels in these segments. To address this issue, we propose a novel deep learning denoising method that separately recovers low- and high-frequency signals using distinct strategies. Low-frequency signals are fitted using an inverse autoencoder with a channel attention mechanism, effectively removing high-frequency components. High-frequency signals are then predicted using a bidirectional long short-term memory network (BiLSTM) combined with a squeeze-and-excitation (SE) mechanism, enhancing prediction by considering both global and local signal characteristics. Additionally, we introduce the multivariate state estimation technique (MSET) for real-time signal-noise identification. MSET analyzes residuals after separating low-frequency signals to identify noise. Denoising is performed only on segments with significant noise, preserving more effective signals. Finally, the fitted low-frequency dominant component and predicted high-frequency component are combined to form the denoised MT signals. This combined approach significantly improves the restoration quality of effective signals compared to existing methods. Experimental results demonstrate that our method exhibits superior denoising capabilities in both quantitative and qualitative evaluations, including apparent resistivity-phase curves and polarization direction analysis, offering enhanced performance over current deep learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Cynthia完成签到 ,获得积分10
2秒前
guojia应助秀丽的千山采纳,获得30
2秒前
aaaa完成签到,获得积分10
2秒前
柯曼云完成签到,获得积分10
2秒前
成就的豌豆完成签到,获得积分10
3秒前
长欢发布了新的文献求助10
3秒前
kangnakangna完成签到,获得积分20
3秒前
左丘冥完成签到,获得积分10
4秒前
香蕉晓曼完成签到,获得积分10
4秒前
小苹果汤完成签到,获得积分10
4秒前
浩浩浩完成签到,获得积分10
4秒前
鲤鱼宛凝完成签到,获得积分10
4秒前
5秒前
dusai发布了新的文献求助10
5秒前
沉默的红牛完成签到 ,获得积分10
6秒前
比哈特完成签到,获得积分10
6秒前
悲凉的强炫完成签到,获得积分10
7秒前
defupai完成签到,获得积分10
7秒前
可问春风完成签到,获得积分10
8秒前
张馨友完成签到,获得积分10
8秒前
共享精神应助9298488采纳,获得10
8秒前
3139813319完成签到,获得积分10
9秒前
9秒前
阿典完成签到,获得积分10
11秒前
11秒前
11秒前
饱满棒棒糖完成签到,获得积分10
11秒前
无聊的翠芙完成签到,获得积分10
12秒前
鹏N完成签到,获得积分10
12秒前
12秒前
wzm完成签到,获得积分10
12秒前
13秒前
13秒前
小脸完成签到,获得积分10
13秒前
13秒前
多啦a萌完成签到,获得积分20
13秒前
也特吐露了完成签到,获得积分20
13秒前
Menpinland完成签到,获得积分10
14秒前
14秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The duality of human existence: Isolation and communion in Western man 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827624
求助须知:如何正确求助?哪些是违规求助? 3369888
关于积分的说明 10458886
捐赠科研通 3089665
什么是DOI,文献DOI怎么找? 1699996
邀请新用户注册赠送积分活动 817573
科研通“疑难数据库(出版商)”最低求助积分说明 770285