A Novel Frequency-Division Deep Learning Approach for Magnetotelluric Data Quality Enhancement

计算机科学 降噪 人工智能 噪音(视频) 频域 时频分析 模式识别(心理学) 信号(编程语言) 深度学习 信号处理 算法 电信 计算机视觉 雷达 图像(数学) 程序设计语言
作者
Nian Yu,Mingjie Ji,Chao Zhang,Yi Ye,Wei Zhou
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:: 1-86
标识
DOI:10.1190/geo2024-0451.1
摘要

High signal-to-noise ratio magnetotelluric (MT) data are crucial for accurately interpreting subsurface structures. Recently, deep learning has become popular for MT denoising due to its ability to avoid parameter tuning and enable real-time processing. These methods typically fit or predict signals in noisy segments after identifying and segmenting signal and noise in the time domain. However, these methods struggle to preserve both low- and high-frequency signals effectively due to high noise levels in these segments. To address this issue, we propose a novel deep learning denoising method that separately recovers low- and high-frequency signals using distinct strategies. Low-frequency signals are fitted using an inverse autoencoder with a channel attention mechanism, effectively removing high-frequency components. High-frequency signals are then predicted using a bidirectional long short-term memory network (BiLSTM) combined with a squeeze-and-excitation (SE) mechanism, enhancing prediction by considering both global and local signal characteristics. Additionally, we introduce the multivariate state estimation technique (MSET) for real-time signal-noise identification. MSET analyzes residuals after separating low-frequency signals to identify noise. Denoising is performed only on segments with significant noise, preserving more effective signals. Finally, the fitted low-frequency dominant component and predicted high-frequency component are combined to form the denoised MT signals. This combined approach significantly improves the restoration quality of effective signals compared to existing methods. Experimental results demonstrate that our method exhibits superior denoising capabilities in both quantitative and qualitative evaluations, including apparent resistivity-phase curves and polarization direction analysis, offering enhanced performance over current deep learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坚强怀绿完成签到,获得积分10
1秒前
张雷应助柠檬普洱茶采纳,获得20
2秒前
六烃季铵发布了新的文献求助20
2秒前
飘落发布了新的文献求助10
2秒前
wuchang发布了新的文献求助10
2秒前
NexusExplorer应助hihao采纳,获得10
3秒前
壹壹壹完成签到,获得积分10
3秒前
爱上学的小金完成签到 ,获得积分10
4秒前
Owen应助ddddd采纳,获得10
4秒前
小韩完成签到,获得积分10
4秒前
杨涵完成签到 ,获得积分10
4秒前
4秒前
5秒前
安静海菡完成签到,获得积分10
5秒前
二十四桥明月夜完成签到,获得积分10
5秒前
SCUTnwj完成签到,获得积分10
5秒前
英俊的铭应助blUe采纳,获得10
5秒前
包容的觅双完成签到,获得积分10
5秒前
比奇堡艺术家完成签到,获得积分10
6秒前
Yw_M发布了新的文献求助10
6秒前
Yangon发布了新的文献求助10
6秒前
HHHSean发布了新的文献求助10
6秒前
有魅力醉山完成签到,获得积分10
6秒前
哒哒哒太阳完成签到,获得积分10
6秒前
佐佐木淳平完成签到,获得积分10
7秒前
7秒前
小二郎应助可乐全糖微冰采纳,获得10
7秒前
山东老铁发布了新的文献求助10
8秒前
飘落完成签到,获得积分10
8秒前
puzhongjiMiQ完成签到,获得积分10
8秒前
nulinuli完成签到 ,获得积分10
9秒前
9秒前
123发布了新的文献求助10
9秒前
希望天下0贩的0应助yyy采纳,获得10
9秒前
DLDL完成签到,获得积分10
9秒前
高兴绿柳发布了新的文献求助10
10秒前
Yang应助奋斗映寒采纳,获得20
10秒前
zlxxianer发布了新的文献求助10
10秒前
李爱国应助huyuan采纳,获得10
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1500
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
Composite Predicates in English 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3981481
求助须知:如何正确求助?哪些是违规求助? 3525100
关于积分的说明 11225406
捐赠科研通 3262855
什么是DOI,文献DOI怎么找? 1801423
邀请新用户注册赠送积分活动 879773
科研通“疑难数据库(出版商)”最低求助积分说明 807529