Machine Learning Approach for Sepsis Risk Assessment in Ischemic Stroke Patients

医学 败血症 逻辑回归 重症监护室 接收机工作特性 冲程(发动机) 机器学习 急诊医学 机械通风 重症监护医学 人工智能 内科学 计算机科学 机械工程 工程类
作者
Fengkai Mao,Leqing Lin,Dongcheng Liang,W. Cheng,Ning Zhang,Ji Li,Siming Wu
出处
期刊:Journal of Intensive Care Medicine [SAGE Publishing]
标识
DOI:10.1177/08850666241308195
摘要

Background Ischemic stroke is a critical neurological condition, with infection representing a significant aspect of its clinical management. Sepsis, a life-threatening organ dysfunction resulting from infection, is among the most dangerous complications in the intensive care unit (ICU). Currently, no model exists to predict the onset of sepsis in ischemic stroke patients. This study aimed to develop the first predictive model for sepsis in ischemic stroke patients using data from the MIMIC-IV database, leveraging machine learning techniques. Methods A total of 2238 adult patients with a diagnosis of ischemic stroke, admitted to the ICU for the first time, were included from the MIMIC-IV database. The outcome of interest was the development of sepsis. Model development adhered to the TRIPOD guidelines. Feature selection was performed using Least Absolute Shrinkage and Selection Operator (LASSO) regression, identifying 28 key variables. Multiple machine learning algorithms, including logistic regression, k-nearest neighbors, support vector machines, decision trees, and XGBoost, were trained and internally validated. Performance metrics were assessed, and XGBoost was selected as the optimal model. The SHAP method was used to interpret the XGBoost model, revealing the impact of individual features on predictions. The model was also deployed on a user-friendly platform for practical use in clinical settings. Results The XGBoost model demonstrated superior performance in the validation set, achieving an area under the curve (AUC) of 0.863 and offering greater net benefit compared to other models. SHAP analysis identified key factors influencing sepsis risk, including the use of invasive mechanical ventilation on the first day, excessive body weight, a Glasgow Coma Scale verbal score below 3, age, and elevated body temperature (>37.5 °C). A user interface had been developed to enable clinicians to easily access and utilize the model. Conclusions This study developed the first machine learning-based model to predict sepsis in ischemic stroke patients. The model exhibited high accuracy and holds potential as a clinical decision support tool, enabling earlier identification of high-risk patients and facilitating preventive measures to reduce sepsis incidence and mortality in this population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到 ,获得积分10
刚刚
三水完成签到 ,获得积分10
1秒前
华仔应助ray采纳,获得10
2秒前
于奕霖发布了新的文献求助30
3秒前
脑洞疼应助失眠的血茗采纳,获得10
3秒前
冷静的十八完成签到,获得积分10
6秒前
14秒前
Ava应助能干数据线采纳,获得10
14秒前
西瓜555发布了新的文献求助10
15秒前
科研毛毛虫完成签到,获得积分10
17秒前
18秒前
23秒前
27秒前
27秒前
liuying2发布了新的文献求助10
27秒前
30秒前
传奇3应助liuying2采纳,获得10
33秒前
33秒前
34秒前
ray发布了新的文献求助10
34秒前
37秒前
37秒前
发文章鸭完成签到 ,获得积分10
38秒前
Niniiii发布了新的文献求助10
41秒前
干净仰发布了新的文献求助10
41秒前
AnyYuan完成签到 ,获得积分10
46秒前
一二三发布了新的文献求助10
47秒前
49秒前
dio完成签到,获得积分10
51秒前
54秒前
58秒前
饺饺饺饺饺饺完成签到,获得积分10
1分钟前
老实寒云发布了新的文献求助10
1分钟前
1分钟前
小马甲应助memory采纳,获得10
1分钟前
shencheng完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
Nirvan发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778950
求助须知:如何正确求助?哪些是违规求助? 3324631
关于积分的说明 10218960
捐赠科研通 3039564
什么是DOI,文献DOI怎么找? 1668356
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758440