Machine Learning Approach for Sepsis Risk Assessment in Ischemic Stroke Patients

医学 败血症 逻辑回归 重症监护室 接收机工作特性 冲程(发动机) 机器学习 急诊医学 机械通风 重症监护医学 人工智能 内科学 计算机科学 机械工程 工程类
作者
Fengkai Mao,Leqing Lin,Dongcheng Liang,W. Cheng,Ning Zhang,Ji Li,Siming Wu
出处
期刊:Journal of Intensive Care Medicine [SAGE Publishing]
被引量:1
标识
DOI:10.1177/08850666241308195
摘要

Background Ischemic stroke is a critical neurological condition, with infection representing a significant aspect of its clinical management. Sepsis, a life-threatening organ dysfunction resulting from infection, is among the most dangerous complications in the intensive care unit (ICU). Currently, no model exists to predict the onset of sepsis in ischemic stroke patients. This study aimed to develop the first predictive model for sepsis in ischemic stroke patients using data from the MIMIC-IV database, leveraging machine learning techniques. Methods A total of 2238 adult patients with a diagnosis of ischemic stroke, admitted to the ICU for the first time, were included from the MIMIC-IV database. The outcome of interest was the development of sepsis. Model development adhered to the TRIPOD guidelines. Feature selection was performed using Least Absolute Shrinkage and Selection Operator (LASSO) regression, identifying 28 key variables. Multiple machine learning algorithms, including logistic regression, k-nearest neighbors, support vector machines, decision trees, and XGBoost, were trained and internally validated. Performance metrics were assessed, and XGBoost was selected as the optimal model. The SHAP method was used to interpret the XGBoost model, revealing the impact of individual features on predictions. The model was also deployed on a user-friendly platform for practical use in clinical settings. Results The XGBoost model demonstrated superior performance in the validation set, achieving an area under the curve (AUC) of 0.863 and offering greater net benefit compared to other models. SHAP analysis identified key factors influencing sepsis risk, including the use of invasive mechanical ventilation on the first day, excessive body weight, a Glasgow Coma Scale verbal score below 3, age, and elevated body temperature (>37.5 °C). A user interface had been developed to enable clinicians to easily access and utilize the model. Conclusions This study developed the first machine learning-based model to predict sepsis in ischemic stroke patients. The model exhibited high accuracy and holds potential as a clinical decision support tool, enabling earlier identification of high-risk patients and facilitating preventive measures to reduce sepsis incidence and mortality in this population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhao_yuwen完成签到,获得积分20
刚刚
yurihuang发布了新的文献求助20
刚刚
丘比特应助梅梅采纳,获得10
刚刚
汉堡包应助wang采纳,获得10
1秒前
123发布了新的文献求助10
1秒前
1秒前
科研通AI6应助小李呀采纳,获得10
1秒前
海洋发布了新的文献求助10
1秒前
彭于晏应助哥哥采纳,获得10
3秒前
eanooo发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
王东发布了新的文献求助10
4秒前
Bystander完成签到 ,获得积分10
4秒前
NVSK发布了新的文献求助30
5秒前
小马甲应助jiaxiangxia采纳,获得10
5秒前
上官若男应助雪白凡灵采纳,获得10
6秒前
6秒前
李琦完成签到 ,获得积分10
6秒前
pichuchu完成签到,获得积分20
7秒前
7秒前
8秒前
123完成签到,获得积分0
8秒前
搜集达人应助蒲曦采纳,获得10
9秒前
9秒前
奥老师给奥老师的求助进行了留言
11秒前
离蒲完成签到 ,获得积分10
12秒前
yyddfytc完成签到,获得积分10
12秒前
12秒前
kk完成签到 ,获得积分10
14秒前
英俊的铭应助小樊啦采纳,获得10
15秒前
悄悄.完成签到,获得积分10
16秒前
17秒前
发展是第一要务完成签到 ,获得积分10
17秒前
852应助123采纳,获得10
17秒前
晨曦发布了新的文献求助200
17秒前
研友_8Raw2Z发布了新的文献求助10
18秒前
18秒前
sdxac发布了新的文献求助10
18秒前
许愿会python完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4693169
求助须知:如何正确求助?哪些是违规求助? 4064087
关于积分的说明 12566095
捐赠科研通 3762348
什么是DOI,文献DOI怎么找? 2077971
邀请新用户注册赠送积分活动 1106275
科研通“疑难数据库(出版商)”最低求助积分说明 984687