MHAF-YOLO: Multi-Branch Heterogeneous Auxiliary Fusion YOLO for accurate object detection

融合 人工智能 计算机视觉 计算机科学 对象(语法) 目标检测 传感器融合 模式识别(心理学) 哲学 语言学
作者
Zhiqiang Yang,Qiu Guan,Zhongwen Yu,Xinli Xu,Haixia Long,Sheng Lian,Haigen Hu,Ying Tang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2502.04656
摘要

Due to the effective multi-scale feature fusion capabilities of the Path Aggregation FPN (PAFPN), it has become a widely adopted component in YOLO-based detectors. However, PAFPN struggles to integrate high-level semantic cues with low-level spatial details, limiting its performance in real-world applications, especially with significant scale variations. In this paper, we propose MHAF-YOLO, a novel detection framework featuring a versatile neck design called the Multi-Branch Auxiliary FPN (MAFPN), which consists of two key modules: the Superficial Assisted Fusion (SAF) and Advanced Assisted Fusion (AAF). The SAF bridges the backbone and the neck by fusing shallow features, effectively transferring crucial low-level spatial information with high fidelity. Meanwhile, the AAF integrates multi-scale feature information at deeper neck layers, delivering richer gradient information to the output layer and further enhancing the model learning capacity. To complement MAFPN, we introduce the Global Heterogeneous Flexible Kernel Selection (GHFKS) mechanism and the Reparameterized Heterogeneous Multi-Scale (RepHMS) module to enhance feature fusion. RepHMS is globally integrated into the network, utilizing GHFKS to select larger convolutional kernels for various feature layers, expanding the vertical receptive field and capturing contextual information across spatial hierarchies. Locally, it optimizes convolution by processing both large and small kernels within the same layer, broadening the lateral receptive field and preserving crucial details for detecting smaller targets. The source code of this work is available at: https://github.com/yang0201/MHAF-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开开完成签到,获得积分10
刚刚
ba发布了新的文献求助10
1秒前
wangrblzu应助江川采纳,获得10
1秒前
科研通AI5应助饭宝采纳,获得10
1秒前
2秒前
田様应助快乐灵安采纳,获得10
2秒前
dzy完成签到,获得积分10
3秒前
3秒前
4秒前
秋子发布了新的文献求助10
4秒前
在水一方应助鱼粥很好采纳,获得10
4秒前
5秒前
不眠的人完成签到,获得积分10
6秒前
大兵哥发布了新的文献求助10
6秒前
六六完成签到,获得积分10
7秒前
Owen应助糖醋可乐采纳,获得10
7秒前
8秒前
8秒前
打打应助111采纳,获得10
8秒前
wyuanhu完成签到,获得积分10
8秒前
甜妹i怎么会不甜完成签到,获得积分10
8秒前
sv完成签到,获得积分10
9秒前
轩某完成签到,获得积分20
9秒前
9秒前
NikiJu完成签到 ,获得积分10
9秒前
哈哈完成签到 ,获得积分10
10秒前
yanchen发布了新的文献求助10
10秒前
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
党小波应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
11秒前
trans应助科研通管家采纳,获得10
11秒前
zbw发布了新的文献求助10
11秒前
cdercder应助科研通管家采纳,获得10
11秒前
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
kingwill应助lihua采纳,获得20
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cardiopulmonary Bypass 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837986
求助须知:如何正确求助?哪些是违规求助? 3380201
关于积分的说明 10512925
捐赠科研通 3099817
什么是DOI,文献DOI怎么找? 1707224
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772717