已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rethinking Copy-Paste for Consistency Learning in Medical Image Segmentation

图像分割 人工智能 计算机视觉 分割 计算机科学 图像处理 尺度空间分割 图像纹理 一致性(知识库) 图像(数学) 模式识别(心理学)
作者
Senlong Huang,Yongxin Ge,Dongfang Liu,Mingjian Hong,Junhan Zhao,Alexander C. Loui
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 1060-1074 被引量:1
标识
DOI:10.1109/tip.2025.3536208
摘要

Semi-supervised learning based on consistency learning offers significant promise for enhancing medical image segmentation. Current approaches use copy-paste as an effective data perturbation technique to facilitate weak-to-strong consistency learning. However, these techniques often lead to a decrease in the accuracy of synthetic labels corresponding to the synthetic data and introduce excessive perturbations to the distribution of the training data. Such over-perturbation causes the data distribution to stray from its true distribution, thereby impairing the model's generalization capabilities as it learns the decision boundaries. We propose a weak-to-strong consistency learning framework that integrally addresses these issues with two primary designs: ① it emphasizes the use of highly reliable data to enhance the quality of labels in synthetic datasets through cross-copy-pasting between labeled and unlabeled datasets; ② it employs uncertainty estimation and foreground region constraints to meticulously filter the regions for copy-pasting, thus the copy-paste technique implemented introduces a beneficial perturbation to the training data distribution. Our framework expands the copy-paste method by addressing its inherent limitations, and amplifying the potential of data perturbations for consistency learning. We extensively validated our model using six publicly available medical image segmentation datasets across different diagnostic tasks, including the segmentation of cardiac structures, prostate structures, brain structures, skin lesions, and gastrointestinal polyps. The results demonstrate that our method significantly outperforms state-of-the-art models. For instance, on the PROMISE12 dataset for the prostate structure segmentation task, using only 10% labeled data, our method achieves a 15.31% higher Dice score compared to the baseline models. Our experimental code will be made publicly available at https://github.com/slhuang24/RCP4CL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助橘海万青采纳,获得10
1秒前
2秒前
威武的荷花完成签到,获得积分10
2秒前
Mandy发布了新的文献求助10
2秒前
轻松的芯完成签到 ,获得积分10
3秒前
司空豁发布了新的文献求助10
3秒前
魏伯安发布了新的文献求助10
4秒前
nie完成签到,获得积分10
4秒前
hqw发布了新的文献求助10
6秒前
朴实剑通完成签到,获得积分10
6秒前
科研通AI2S应助zzzzzzLARS采纳,获得10
12秒前
闪闪的觅儿完成签到 ,获得积分10
13秒前
完美世界应助侧耳倾听采纳,获得10
13秒前
14秒前
闾丘惜萱完成签到,获得积分10
15秒前
归海海亦完成签到,获得积分10
15秒前
24秒前
哲哲7762完成签到,获得积分20
25秒前
踌躇前半生完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
superLmy完成签到 ,获得积分10
30秒前
hqw完成签到,获得积分10
31秒前
32秒前
changewoo完成签到,获得积分20
35秒前
lpy完成签到,获得积分10
35秒前
小丁同学应助王大壮采纳,获得10
36秒前
CV曲线不要抖完成签到 ,获得积分10
37秒前
情怀应助sunzyu采纳,获得10
37秒前
42秒前
Scarlett完成签到,获得积分10
43秒前
45秒前
文汉天女完成签到,获得积分10
47秒前
47秒前
韩凡发布了新的文献求助30
48秒前
49秒前
49秒前
huangyalin发布了新的文献求助20
50秒前
自爱悠然发布了新的文献求助10
54秒前
彭于晏应助司空豁采纳,获得10
56秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
Learning to Listen, Listening to Learn 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881380
求助须知:如何正确求助?哪些是违规求助? 3423748
关于积分的说明 10735981
捐赠科研通 3148690
什么是DOI,文献DOI怎么找? 1737352
邀请新用户注册赠送积分活动 838802
科研通“疑难数据库(出版商)”最低求助积分说明 784087