Rethinking Copy-Paste for Consistency Learning in Medical Image Segmentation

图像分割 人工智能 计算机视觉 分割 计算机科学 图像处理 尺度空间分割 图像纹理 一致性(知识库) 图像(数学) 模式识别(心理学)
作者
Senlong Huang,Yongxin Ge,Dongfang Liu,Mingjian Hong,Junhan Zhao,Alexander C. Loui
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 1060-1074 被引量:3
标识
DOI:10.1109/tip.2025.3536208
摘要

Semi-supervised learning based on consistency learning offers significant promise for enhancing medical image segmentation. Current approaches use copy-paste as an effective data perturbation technique to facilitate weak-to-strong consistency learning. However, these techniques often lead to a decrease in the accuracy of synthetic labels corresponding to the synthetic data and introduce excessive perturbations to the distribution of the training data. Such over-perturbation causes the data distribution to stray from its true distribution, thereby impairing the model's generalization capabilities as it learns the decision boundaries. We propose a weak-to-strong consistency learning framework that integrally addresses these issues with two primary designs: 1) it emphasizes the use of highly reliable data to enhance the quality of labels in synthetic datasets through cross-copy-pasting between labeled and unlabeled datasets; 2) it employs uncertainty estimation and foreground region constraints to meticulously filter the regions for copy-pasting, thus the copy-paste technique implemented introduces a beneficial perturbation to the training data distribution. Our framework expands the copy-paste method by addressing its inherent limitations, and amplifying the potential of data perturbations for consistency learning. We extensively validated our model using six publicly available medical image segmentation datasets across different diagnostic tasks, including the segmentation of cardiac structures, prostate structures, brain structures, skin lesions, and gastrointestinal polyps. The results demonstrate that our method significantly outperforms state-of-the-art models. For instance, on the PROMISE12 dataset for the prostate structure segmentation task, using only 10% labeled data, our method achieves a 15.31% higher Dice score compared to the baseline models. Our experimental code will be made publicly available at https://github.com/slhuang24/RCP4CL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葫芦娃完成签到,获得积分10
刚刚
JOKY完成签到 ,获得积分10
刚刚
1秒前
香菜重度爱好者完成签到 ,获得积分10
1秒前
明镜完成签到,获得积分10
5秒前
Cwx2020发布了新的文献求助10
5秒前
一氧化二氢完成签到,获得积分10
6秒前
行云流水完成签到 ,获得积分10
6秒前
drbrianlau完成签到,获得积分10
6秒前
刘志萍完成签到 ,获得积分10
7秒前
s_yu完成签到,获得积分10
7秒前
Crystal完成签到 ,获得积分10
9秒前
Yoanna应助科研通管家采纳,获得30
9秒前
Yoanna应助科研通管家采纳,获得30
9秒前
打打应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
10秒前
Yoanna应助科研通管家采纳,获得30
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
Bingtao_Lian完成签到 ,获得积分10
10秒前
南星完成签到 ,获得积分10
11秒前
迷人冥完成签到 ,获得积分10
14秒前
Cwx2020完成签到,获得积分10
16秒前
16秒前
同行完成签到 ,获得积分10
17秒前
Lynn完成签到,获得积分10
18秒前
19秒前
宗剑完成签到,获得积分10
20秒前
金开完成签到,获得积分10
20秒前
西格完成签到 ,获得积分10
22秒前
23秒前
不倦应助高大的蜡烛采纳,获得10
26秒前
27秒前
风语过发布了新的文献求助10
28秒前
什么都不想完成签到,获得积分10
29秒前
29秒前
jingchengke完成签到,获得积分10
31秒前
春儿发布了新的文献求助10
33秒前
游云发布了新的文献求助20
33秒前
一篮子青柠檬完成签到,获得积分10
34秒前
星月夜完成签到,获得积分10
34秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212620
求助须知:如何正确求助?哪些是违规求助? 4388725
关于积分的说明 13664435
捐赠科研通 4249316
什么是DOI,文献DOI怎么找? 2331521
邀请新用户注册赠送积分活动 1329244
关于科研通互助平台的介绍 1282658