CL-GNN: Contrastive Learning and Graph Neural Network for Protein–Ligand Binding Affinity Prediction

计算机科学 化学 图形 人工智能 人工神经网络 计算生物学 生物 理论计算机科学
作者
Yunjiang Zhang,Chenyu Huang,Yaxin Wang,Shuyuan Li,Shaorui Sun
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01290
摘要

In the realm of drug discovery and design, the accurate prediction of protein–ligand binding affinity is of paramount importance as it underpins the functional interactions within biological systems. This study introduces a novel self-supervised learning (SSL) framework that combines contrastive learning and graph neural networks (CL-GNN) for predicting protein–ligand binding affinities, which is a critical aspect of drug discovery. Traditional methods for affinity prediction are expensive and time-consuming, prompting the development of more efficient computational approaches. CL-GNN utilizes a contrastive learning strategy, a form of SSL, to learn from a large data set of 371 458 unique unlabeled protein–ligand complexes. By employing graph neural networks and molecular graph enhancement techniques, the model effectively captures protein–ligand interactions in a self-supervised manner. The fine-tuned model demonstrates competitive performance, achieving high Pearson's correlation coefficients and low root-mean-square errors on benchmark data sets. The proposed method outperforms existing machine learning models, showcasing its potential for accelerating the drug development process. The method effectively quantifies the similarity between protein–ligand complex representations learned in the pretraining and downstream testing phases through cosine similarity assessment. This approach not only revealed potential connections between complexes in their binding properties but also provided new insights into the understanding of drug mechanisms of action. In addition, the transparency of the model is significantly improved by visualizing the importance of key protein residues and ligand atoms. This visualization tool provides insight into the model's predictive decision-making process, providing key biological insights for drug design and optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助vv采纳,获得10
刚刚
刚刚
22完成签到,获得积分10
刚刚
sddfafd发布了新的文献求助10
1秒前
1秒前
2秒前
916应助葳葳采纳,获得10
2秒前
5秒前
sddfafd完成签到,获得积分10
5秒前
领导范儿应助dreamboat采纳,获得10
6秒前
MM11111应助古月采纳,获得30
6秒前
Vvvnnnaa1发布了新的文献求助10
7秒前
anne完成签到 ,获得积分10
7秒前
千空发布了新的文献求助10
7秒前
11秒前
AUGKING27完成签到 ,获得积分10
12秒前
13秒前
14秒前
善良海云完成签到,获得积分10
14秒前
guangshuang发布了新的文献求助10
15秒前
科研通AI5应助小巧雪糕采纳,获得10
17秒前
橘子发布了新的文献求助10
19秒前
日出发布了新的文献求助10
20秒前
伶俐念珍发布了新的文献求助10
20秒前
21秒前
Rye227应助日出采纳,获得10
22秒前
guangshuang完成签到,获得积分10
23秒前
cdercder应助流年采纳,获得10
26秒前
28秒前
29秒前
29秒前
豆浆烩面完成签到,获得积分10
30秒前
huangbing123完成签到 ,获得积分10
31秒前
热情孤丹发布了新的文献求助10
32秒前
vv发布了新的文献求助10
32秒前
SciGPT应助包容的香菱采纳,获得10
32秒前
滕永杰发布了新的文献求助10
33秒前
Ancestor发布了新的文献求助10
35秒前
Jieh完成签到,获得积分10
37秒前
客念完成签到 ,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778351
求助须知:如何正确求助?哪些是违规求助? 3323953
关于积分的说明 10216860
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667919
邀请新用户注册赠送积分活动 798427
科研通“疑难数据库(出版商)”最低求助积分说明 758385