已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CL-GNN: Contrastive Learning and Graph Neural Network for Protein–Ligand Binding Affinity Prediction

计算机科学 化学 图形 人工智能 人工神经网络 计算生物学 生物 理论计算机科学
作者
Yunjiang Zhang,Chenyu Huang,Yaxin Wang,Shuyuan Li,Shaorui Sun
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (4): 1724-1735 被引量:4
标识
DOI:10.1021/acs.jcim.4c01290
摘要

In the realm of drug discovery and design, the accurate prediction of protein-ligand binding affinity is of paramount importance as it underpins the functional interactions within biological systems. This study introduces a novel self-supervised learning (SSL) framework that combines contrastive learning and graph neural networks (CL-GNN) for predicting protein-ligand binding affinities, which is a critical aspect of drug discovery. Traditional methods for affinity prediction are expensive and time-consuming, prompting the development of more efficient computational approaches. CL-GNN utilizes a contrastive learning strategy, a form of SSL, to learn from a large data set of 371 458 unique unlabeled protein-ligand complexes. By employing graph neural networks and molecular graph enhancement techniques, the model effectively captures protein-ligand interactions in a self-supervised manner. The fine-tuned model demonstrates competitive performance, achieving high Pearson's correlation coefficients and low root-mean-square errors on benchmark data sets. The proposed method outperforms existing machine learning models, showcasing its potential for accelerating the drug development process. The method effectively quantifies the similarity between protein-ligand complex representations learned in the pretraining and downstream testing phases through cosine similarity assessment. This approach not only revealed potential connections between complexes in their binding properties but also provided new insights into the understanding of drug mechanisms of action. In addition, the transparency of the model is significantly improved by visualizing the importance of key protein residues and ligand atoms. This visualization tool provides insight into the model's predictive decision-making process, providing key biological insights for drug design and optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OnlyHarbour完成签到,获得积分10
刚刚
1秒前
2秒前
完美世界应助小彭采纳,获得10
3秒前
OnlyHarbour发布了新的文献求助10
3秒前
meimei完成签到 ,获得积分0
3秒前
光亮静槐完成签到 ,获得积分10
8秒前
8秒前
阿治完成签到 ,获得积分10
9秒前
伞下铭发布了新的文献求助10
12秒前
尘染完成签到 ,获得积分10
12秒前
缨绒完成签到 ,获得积分10
13秒前
高高的哈密瓜完成签到 ,获得积分10
17秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
葫芦冰糖应助科研通管家采纳,获得20
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
ding应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
俏皮的孤丹完成签到 ,获得积分10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得10
19秒前
成就的笑南完成签到 ,获得积分0
20秒前
summer完成签到,获得积分10
24秒前
下雨天完成签到,获得积分10
25秒前
26秒前
有何可不完成签到,获得积分10
32秒前
33秒前
34秒前
ZH完成签到,获得积分10
34秒前
满天星完成签到 ,获得积分10
38秒前
李健的粉丝团团长应助jxyx采纳,获得30
38秒前
xxxgggppp发布了新的文献求助10
38秒前
Ying完成签到,获得积分10
38秒前
orixero应助任性糖豆采纳,获得10
39秒前
贤惠的早晨完成签到 ,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754409
求助须知:如何正确求助?哪些是违规求助? 5486788
关于积分的说明 15380103
捐赠科研通 4893032
什么是DOI,文献DOI怎么找? 2631695
邀请新用户注册赠送积分活动 1579638
关于科研通互助平台的介绍 1535372