DeepSeek-R1 vs OpenAI o1 for Ophthalmic Diagnoses and Management Plans

麦克内马尔试验 医学 医学诊断 临床实习 医学物理学 家庭医学 病理 统计 数学
作者
David Mikhail,Andrew Farah,Jason Milad,Andrew Mihalache,Daniel Milad,Fares Antaki,Michael Balas,Marko M. Popovic,Rajeev H. Muni,Pearse A. Keane,Renaud Duval
出处
期刊:JAMA Ophthalmology [American Medical Association]
卷期号:143 (10): 834-834 被引量:1
标识
DOI:10.1001/jamaophthalmol.2025.2918
摘要

Importance Large language models (LLMs) are increasingly being explored in clinical decision-making, but few studies have evaluated their performance on complex ophthalmology cases from clinical practice settings. Understanding whether open-weight, reasoning-enhanced LLMs can outperform proprietary models has implications for clinical utility and accessibility. Objective To evaluate the diagnostic accuracy, management decision-making, and cost of DeepSeek-R1 vs OpenAI o1 across diverse ophthalmic subspecialties. Design, Setting, and Participants This was a cross-sectional evaluation conducted using standardized prompts and model configurations. Clinical cases were sourced from JAMA Ophthalmology ’s Clinical Challenge articles, containing complex cases from clinical practice settings. Each case included an open-ended diagnostic question and a multiple-choice next-step decision. All cases were included without exclusions, and no human participants were involved. Data were analyzed from March 13 to March 30, 2025. Exposures DeepSeek-R1and OpenAI o1 were evaluated using the Plan-and-Solve Plus (PS+) prompt engineering method. Main Outcomes and Measures Primary outcomes were diagnostic accuracy and next-step decision-making accuracy, defined as the proportion of correct responses. Token cost analyses were performed to estimate expenses. Intermodel agreement was evaluated using Cohen κ, and McNemar test was used to compare performance. Results A total of 422 clinical cases were included, spanning 10 subspecialties. DeepSeek-R1 achieved a higher diagnostic accuracy of 70.4% (297 of 422 cases) compared with 63.0% (266 of 422 cases) for OpenAI o1, a 7.3% difference (95% CI, 1.0%-13.7%; P = .02). For next-step decisions, DeepSeek-R1 was correct in 82.7% of cases (349 of 422 cases) vs OpenAI o1’s accuracy of 75.8% (320 of 422 cases), a 6.9% difference (95% CI, 1.4%-12.3%; P = .01). Intermodel agreement was moderate (κ = 0.422; 95% CI, 0.375-0.469; P < .001). DeepSeek-R1 offered lower costs per query than OpenAI o1, with savings exceeding 66-fold (up to 98.5%) during off-peak pricing. Conclusions and Relevance DeepSeek-R1 outperformed OpenAI o1 in diagnosis and management across subspecialties while lowering operating costs, supporting the potential of open-weight, reinforcement learning–augmented LLMs as scalable and cost-saving tools for clinical decision support. Further investigations should evaluate safety guardrails and assess performance of self-hosted adaptations of DeepSeek-R1 with domain-specific ophthalmic expertise to optimize clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Yolo完成签到,获得积分10
2秒前
MAXDONE完成签到,获得积分10
2秒前
深情安青应助隶书采纳,获得10
3秒前
杰尼龟的鱼完成签到 ,获得积分10
3秒前
4秒前
Ya完成签到 ,获得积分10
4秒前
angelinazh发布了新的文献求助10
6秒前
无辜的黄豆完成签到 ,获得积分10
7秒前
9秒前
9秒前
tomorrow发布了新的文献求助10
9秒前
牛马完成签到,获得积分10
9秒前
深情安青应助沟通亿心采纳,获得10
10秒前
虞无声完成签到,获得积分10
11秒前
12秒前
vkk完成签到 ,获得积分10
12秒前
吱吱完成签到 ,获得积分10
13秒前
orixero应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
风清扬应助科研通管家采纳,获得10
14秒前
风清扬应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
风清扬应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
15秒前
风清扬应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
风清扬应助科研通管家采纳,获得30
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
某某某应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
某某某应助科研通管家采纳,获得10
15秒前
芳菲依旧应助科研通管家采纳,获得10
15秒前
qw完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733187
求助须知:如何正确求助?哪些是违规求助? 5346686
关于积分的说明 15323180
捐赠科研通 4878353
什么是DOI,文献DOI怎么找? 2621161
邀请新用户注册赠送积分活动 1570287
关于科研通互助平台的介绍 1527172