DeepSeek-R1 vs OpenAI o1 for Ophthalmic Diagnoses and Management Plans

麦克内马尔试验 医学 医学诊断 临床实习 医学物理学 家庭医学 病理 统计 数学
作者
David Mikhail,Andrew Farah,Jason Milad,Andrew Mihalache,Daniel Milad,Fares Antaki,Michael Balas,Marko M. Popovic,Rajeev H. Muni,Pearse A. Keane,Renaud Duval
出处
期刊:JAMA Ophthalmology [American Medical Association]
被引量:1
标识
DOI:10.1001/jamaophthalmol.2025.2918
摘要

Importance Large language models (LLMs) are increasingly being explored in clinical decision-making, but few studies have evaluated their performance on complex ophthalmology cases from clinical practice settings. Understanding whether open-weight, reasoning-enhanced LLMs can outperform proprietary models has implications for clinical utility and accessibility. Objective To evaluate the diagnostic accuracy, management decision-making, and cost of DeepSeek-R1 vs OpenAI o1 across diverse ophthalmic subspecialties. Design, Setting, and Participants This was a cross-sectional evaluation conducted using standardized prompts and model configurations. Clinical cases were sourced from JAMA Ophthalmology ’s Clinical Challenge articles, containing complex cases from clinical practice settings. Each case included an open-ended diagnostic question and a multiple-choice next-step decision. All cases were included without exclusions, and no human participants were involved. Data were analyzed from March 13 to March 30, 2025. Exposures DeepSeek-R1and OpenAI o1 were evaluated using the Plan-and-Solve Plus (PS+) prompt engineering method. Main Outcomes and Measures Primary outcomes were diagnostic accuracy and next-step decision-making accuracy, defined as the proportion of correct responses. Token cost analyses were performed to estimate expenses. Intermodel agreement was evaluated using Cohen κ, and McNemar test was used to compare performance. Results A total of 422 clinical cases were included, spanning 10 subspecialties. DeepSeek-R1 achieved a higher diagnostic accuracy of 70.4% (297 of 422 cases) compared with 63.0% (266 of 422 cases) for OpenAI o1, a 7.3% difference (95% CI, 1.0%-13.7%; P = .02). For next-step decisions, DeepSeek-R1 was correct in 82.7% of cases (349 of 422 cases) vs OpenAI o1’s accuracy of 75.8% (320 of 422 cases), a 6.9% difference (95% CI, 1.4%-12.3%; P = .01). Intermodel agreement was moderate (κ = 0.422; 95% CI, 0.375-0.469; P < .001). DeepSeek-R1 offered lower costs per query than OpenAI o1, with savings exceeding 66-fold (up to 98.5%) during off-peak pricing. Conclusions and Relevance DeepSeek-R1 outperformed OpenAI o1 in diagnosis and management across subspecialties while lowering operating costs, supporting the potential of open-weight, reinforcement learning–augmented LLMs as scalable and cost-saving tools for clinical decision support. Further investigations should evaluate safety guardrails and assess performance of self-hosted adaptations of DeepSeek-R1 with domain-specific ophthalmic expertise to optimize clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lbw完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
鑫鑫努力学习完成签到,获得积分10
1秒前
微风正好发布了新的文献求助10
1秒前
BananaSlayer发布了新的文献求助10
1秒前
豆⑧发布了新的文献求助10
2秒前
2秒前
无花果应助ccc采纳,获得10
2秒前
2秒前
huqiao发布了新的文献求助10
3秒前
4秒前
Lacrima发布了新的文献求助10
4秒前
California完成签到 ,获得积分10
5秒前
5秒前
李健应助内向的奎采纳,获得10
5秒前
研友_LmeK4L发布了新的文献求助10
5秒前
6秒前
梅子完成签到 ,获得积分10
6秒前
CD发布了新的文献求助10
7秒前
豆⑧完成签到,获得积分10
7秒前
Tracy完成签到,获得积分10
8秒前
查查完成签到 ,获得积分10
8秒前
lf发布了新的文献求助10
8秒前
功不唐捐完成签到 ,获得积分10
9秒前
ccc发布了新的文献求助10
10秒前
务实思烟发布了新的文献求助10
11秒前
11秒前
脑洞疼应助Who1990采纳,获得10
11秒前
小小小小w完成签到,获得积分10
13秒前
刘男发布了新的文献求助20
13秒前
刘荔枝完成签到,获得积分10
13秒前
14秒前
tttx发布了新的文献求助10
15秒前
外向芫发布了新的文献求助10
16秒前
Ang完成签到,获得积分10
16秒前
一往之前发布了新的文献求助10
16秒前
打打应助俊秀的钥匙采纳,获得30
16秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4959856
求助须知:如何正确求助?哪些是违规求助? 4220465
关于积分的说明 13142788
捐赠科研通 4004259
什么是DOI,文献DOI怎么找? 2191308
邀请新用户注册赠送积分活动 1205628
关于科研通互助平台的介绍 1116888