FEP-YOLO: a lightweight steel surface defect detection method for resource-constrained devices

材料科学 曲面(拓扑) 资源(消歧) 计算机科学 几何学 数学 计算机网络
作者
S. Katircio lu,Yong Liang,Zhihao Ren,Xu Yu,Xinhua Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (7): 076016-076016 被引量:2
标识
DOI:10.1088/1361-6501/aded27
摘要

Abstract The detection of surface defects in steel is a critical task essential for ensuring the quality of industrial products. Deep learning-based defect detection research has demonstrated significant advancements and promising results. However, deep learning-driven detection methods generally rely on high-performance computing hardware for implementation, which restricts their applicability in resource-constrained environments. To resolve these challenges, this study designs a lightweight detection framework, termed FasterNet, efficient multi-scale attention (EMA) mechanism, partial convolution detect (PC-Detect)-you only look once, specifically designed for resource-constrained devices. Firstly, a streamlined fundamental network structure, FasterNet, is adopted to substantially reduce the model size while preserving detection accuracy. Secondly, an EMA mechanism is integrated in the lower layers of the feature extraction network to enhance the model’s ability to accurately locate defects. Lastly, a lightweight detection head, PC-Detect, is developed to further minimize redundant computations and reduce model complexity. Experimental results demonstrate that the proposed model achieves a mean average precision of 80.9% on the NET-DET dataset, with a detection speed of 31.8 frames per second on a CPU. To assess the enhanced model performance on resource-constrained devices, it was deployed on a Raspberry Pi 5, achieving an inference speed of 55 ms. This study validates the feasibility of performing high-quality defect detection on resource-constrained devices, providing low-cost quality monitoring system for industrial manufacturing and broadening the scope of edge computing applications within the industrial sector.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助七七采纳,获得10
1秒前
1秒前
1秒前
2秒前
大梦发布了新的文献求助10
3秒前
Olivia发布了新的文献求助10
3秒前
浮游应助Carl采纳,获得10
3秒前
bzlish发布了新的文献求助10
3秒前
一名路过的靓仔完成签到,获得积分10
3秒前
榴榴发布了新的文献求助10
5秒前
5秒前
仲谋发布了新的文献求助10
5秒前
朴实如冰发布了新的文献求助10
6秒前
7秒前
无私黄豆发布了新的文献求助30
7秒前
健忘的访文完成签到,获得积分10
7秒前
12111完成签到 ,获得积分10
7秒前
慕青应助bzlish采纳,获得10
7秒前
超级小夏完成签到 ,获得积分10
8秒前
蛋花肉圆汤完成签到,获得积分0
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
11秒前
yang发布了新的文献求助10
11秒前
12秒前
英俊的铭应助夕荀采纳,获得10
12秒前
Melan发布了新的文献求助30
13秒前
13秒前
dddd完成签到 ,获得积分10
13秒前
谭佳心完成签到,获得积分20
14秒前
庾储发布了新的文献求助10
15秒前
会飞的流氓兔完成签到 ,获得积分10
15秒前
七七发布了新的文献求助10
15秒前
薛哲发布了新的文献求助10
15秒前
16秒前
17秒前
朴实如冰完成签到,获得积分10
18秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642582
求助须知:如何正确求助?哪些是违规求助? 4759250
关于积分的说明 15018176
捐赠科研通 4801148
什么是DOI,文献DOI怎么找? 2566437
邀请新用户注册赠送积分活动 1524505
关于科研通互助平台的介绍 1484039