Deep-learning-based interferometric synthetic aperture radar time-series analysis for the monitoring and prediction of dam safety

作者
Saygın Abdikan,Suat Coskun,Ömer Gökberk Narin,Eren Gürsoy ÖZDEMİR,Çağlar Bayık,Füsun Balık Şanlı
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217251381157
摘要

Continuous monitoring of large structures is crucial to ensure their optimal functionality. This paper presents a comprehensive study on dam monitoring using the interferometric synthetic aperture radar (InSAR) technique and prediction time series based on InSAR data. Two types of dams were the focus of the study: rock-fill Atatürk Dam, the largest dam in Türkiye, located in the eastern part of the country, and earth-fill Büyükçekmece Dam in Istanbul. In our analysis, we applied the compressed InSAR approach, which provides a higher density of persistent scatter for InSAR analysis. Unlike other studies on dam monitoring using InSAR methods, we aimed to predict displacement using time series derived from both ascending and descending InSAR results, yet this aspect has received little attention. For this purpose, we employed the long short-term memory (LSTM) neural network deep learning method. Moreover, we conducted experiments in both dams with different training and testing ratios acquired in both ascending and descending orbits to evaluate the importance of sampling number. The maximum displacements observed were −15 mm/year for Büyükçekmece Dam and −7 mm/year for Atatürk Dam. For Atatürk Dam, the root-mean-square error (RMSE) is consistently less than 0.9 mm, with percent root-mean-square error (%RMSE) ranging between 6.9% and 26%. In the case of Büyükçekmece Dam, we observed an RMSE of less than 1.3 mm, with %RMSE values ranging between 9.3% and 36.5% for different training and testing scenarios. Our LSTM results demonstrated that as the training percentage increased, the %RMSE values generally lose as well. This indicates a considerably higher relative error when less training data are used, highlighting the importance of data quantity in the predictive accuracy of our model. The results demonstrated that the LSTM estimation method can be effectively applied to health monitoring of large structures, such as dams.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
B哥完成签到,获得积分10
刚刚
希望天下0贩的0应助stws采纳,获得10
刚刚
刚刚
香蕉觅云应助穰远采纳,获得10
1秒前
1秒前
四羟基合铝酸钾完成签到,获得积分10
2秒前
2秒前
顾矜应助赛达儿采纳,获得10
3秒前
3秒前
3秒前
55完成签到,获得积分10
3秒前
gengsumin发布了新的文献求助30
3秒前
淡定的含蕊完成签到,获得积分10
3秒前
Carmen关注了科研通微信公众号
4秒前
毛竹完成签到,获得积分10
4秒前
活力元龙完成签到,获得积分10
4秒前
天真的小丰色完成签到,获得积分10
4秒前
苏紫梗桔发布了新的文献求助10
4秒前
迷路的硬币完成签到,获得积分20
5秒前
5秒前
WYB完成签到 ,获得积分10
6秒前
kkkche完成签到,获得积分10
6秒前
认真的茹妖完成签到,获得积分10
6秒前
6秒前
莫宝发布了新的文献求助10
6秒前
Verritis完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
xdy发布了新的文献求助10
8秒前
儒雅秀完成签到,获得积分10
8秒前
Moonkiss发布了新的文献求助10
8秒前
爱咋咋地完成签到,获得积分10
8秒前
guanxun发布了新的文献求助10
8秒前
文森特的向日葵完成签到,获得积分10
8秒前
8秒前
9秒前
cheese完成签到,获得积分10
9秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580550
求助须知:如何正确求助?哪些是违规求助? 4665376
关于积分的说明 14755842
捐赠科研通 4606862
什么是DOI,文献DOI怎么找? 2528078
邀请新用户注册赠送积分活动 1497365
关于科研通互助平台的介绍 1466331