Liquid Biopsy-Based Volatile Organic Compounds from Blood and Urine and Their Combined Data Sets for Highly Accurate Detection of Cancer

癌症 尿 色谱法 质谱法 液体活检 化学 癌症检测 挥发性有机化合物 医学 内科学 生物化学 有机化学
作者
Reef Einoch Amor,Jeremy Levy,Yoav Y. Broza,Reinis Vangravs,Shelley Rapoport,Min Zhang,Weiwei Wu,Mārcis Leja,Joachim A. Behar,Hossam Haick
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:8 (4): 1450-1461 被引量:11
标识
DOI:10.1021/acssensors.2c02422
摘要

Liquid biopsy is seen as a prospective tool for cancer screening and tracking. However, the difficulty lies in effectively sieving, isolating, and overseeing cancer biomarkers from the backdrop of multiple disrupting cells and substances. The current study reports on the ability to perform liquid biopsy without the need to physically filter and/or isolate the cancer cells per se. This has been achieved through the detection and classification of volatile organic compounds (VOCs) emitted from the cancer cells found in the headspace of blood or urine samples or a combined data set of both. Spectrometric analysis shows that blood and urine contain complementary or overlapping VOC information on kidney cancer, gastric cancer, lung cancer, and fibrogastroscopy subjects. Based on this information, a nanomaterial-based chemical sensor array in conjugation with machine learning as well as data fusion of the signals achieved was carried out on various body fluids to assess the VOC profiles of cancer. The detection of VOC patterns by either Gas Chromatography−Mass Spectrometry (GC−MS) analysis or our sensor array achieved >90% accuracy, >80% sensitivity, and >80% specificity in different binary classification tasks. The hybrid approach, namely, analyzing the VOC datasets of blood and urine together, contributes an additional discrimination ability to the improvement (>3%) of the model's accuracy. The contribution of the hybrid approach for an additional discrimination ability to the improvement of the model's accuracy is examined and reported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵的尔竹完成签到,获得积分10
1秒前
bamboo给bamboo的求助进行了留言
3秒前
苏州河发布了新的文献求助10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
彭于晏应助LiXingchen采纳,获得10
4秒前
冰魂应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
DDZZ发布了新的文献求助10
4秒前
曦月发布了新的文献求助10
5秒前
6秒前
雪白卿发布了新的文献求助30
9秒前
10秒前
cyr完成签到,获得积分10
13秒前
14秒前
15秒前
wei发布了新的文献求助10
17秒前
小二郎应助自由的傲易采纳,获得10
18秒前
研友_VZG7GZ应助自由的傲易采纳,获得10
18秒前
爆米花应助自由的傲易采纳,获得10
18秒前
NexusExplorer应助自由的傲易采纳,获得10
18秒前
nn发布了新的文献求助10
18秒前
20秒前
你吃了吗发布了新的文献求助10
25秒前
27秒前
MZT完成签到,获得积分10
27秒前
29秒前
twang93完成签到,获得积分10
29秒前
30秒前
莫x莫完成签到 ,获得积分10
31秒前
31秒前
清秀的怀蕊完成签到 ,获得积分10
32秒前
上官若男应助nn采纳,获得10
34秒前
duoduo完成签到,获得积分20
34秒前
zou发布了新的文献求助10
35秒前
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787836
求助须知:如何正确求助?哪些是违规求助? 3333486
关于积分的说明 10261926
捐赠科研通 3049234
什么是DOI,文献DOI怎么找? 1673459
邀请新用户注册赠送积分活动 801949
科研通“疑难数据库(出版商)”最低求助积分说明 760428