Optimizing Large Language Models in Radiology and Mitigating Pitfalls: Prompt Engineering and Fine-tuning

医学 医学物理学 放射科 重症监护医学
作者
T. Kim,Michael Makutonin,Reza Sirous,Ramin Javan
出处
期刊:Radiographics [Radiological Society of North America]
卷期号:45 (4) 被引量:2
标识
DOI:10.1148/rg.240073
摘要

Large language models (LLMs) such as generative pretrained transformers (GPTs) have had a major impact on society, and there is increasing interest in using these models for applications in medicine and radiology. This article presents techniques to optimize these models and describes their known challenges and limitations. Specifically, the authors explore how to best craft natural language prompts, a process known as prompt engineering, for these models to elicit more accurate and desirable responses. The authors also explain how fine-tuning is conducted, in which a more general model, such as GPT-4, is further trained on a more specific use case, such as summarizing clinical notes, to further improve reliability and relevance. Despite the enormous potential of these models, substantial challenges limit their widespread implementation. These tools differ substantially from traditional health technology in their complexity and their probabilistic and nondeterministic nature, and these differences lead to issues such as "hallucinations," biases, lack of reliability, and security risks. Therefore, the authors provide radiologists with baseline knowledge of the technology underpinning these models and an understanding of how to use them, in addition to exploring best practices in prompt engineering and fine-tuning. Also discussed are current proof-of-concept use cases of LLMs in the radiology literature, such as in clinical decision support and report generation, and the limitations preventing their current adoption in medicine and radiology. ©RSNA, 2025 See invited commentary by Chung and Mongan in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huangqiuyan完成签到,获得积分10
1秒前
1秒前
一一应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
64658应助科研通管家采纳,获得10
2秒前
可可应助科研通管家采纳,获得10
2秒前
一一应助科研通管家采纳,获得10
3秒前
姜姜姜应助科研通管家采纳,获得10
3秒前
64658应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
arabidopsis应助科研通管家采纳,获得10
3秒前
loxxxuo应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
3秒前
丘比特应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得20
4秒前
arabidopsis应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
小吉利发布了新的文献求助10
4秒前
pupu发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
小狗完成签到 ,获得积分10
7秒前
7秒前
欣吖完成签到,获得积分20
8秒前
8秒前
搜集达人应助迷路以筠采纳,获得10
9秒前
凡凡发布了新的文献求助10
9秒前
handsomelin发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4301430
求助须知:如何正确求助?哪些是违规求助? 3825700
关于积分的说明 11977114
捐赠科研通 3466908
什么是DOI,文献DOI怎么找? 1901566
邀请新用户注册赠送积分活动 949264
科研通“疑难数据库(出版商)”最低求助积分说明 851286