Optimizing Large Language Models in Radiology and Mitigating Pitfalls: Prompt Engineering and Fine-tuning

医学 医学物理学 放射科 重症监护医学
作者
T. Kim,Michael Makutonin,Reza Sirous,Ramin Javan
出处
期刊:Radiographics [Radiological Society of North America]
卷期号:45 (4) 被引量:6
标识
DOI:10.1148/rg.240073
摘要

Large language models (LLMs) such as generative pretrained transformers (GPTs) have had a major impact on society, and there is increasing interest in using these models for applications in medicine and radiology. This article presents techniques to optimize these models and describes their known challenges and limitations. Specifically, the authors explore how to best craft natural language prompts, a process known as prompt engineering, for these models to elicit more accurate and desirable responses. The authors also explain how fine-tuning is conducted, in which a more general model, such as GPT-4, is further trained on a more specific use case, such as summarizing clinical notes, to further improve reliability and relevance. Despite the enormous potential of these models, substantial challenges limit their widespread implementation. These tools differ substantially from traditional health technology in their complexity and their probabilistic and nondeterministic nature, and these differences lead to issues such as "hallucinations," biases, lack of reliability, and security risks. Therefore, the authors provide radiologists with baseline knowledge of the technology underpinning these models and an understanding of how to use them, in addition to exploring best practices in prompt engineering and fine-tuning. Also discussed are current proof-of-concept use cases of LLMs in the radiology literature, such as in clinical decision support and report generation, and the limitations preventing their current adoption in medicine and radiology. ©RSNA, 2025 See invited commentary by Chung and Mongan in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
明天好发布了新的文献求助10
1秒前
科研通AI6应助hh采纳,获得10
1秒前
八戒发布了新的文献求助20
1秒前
情怀应助hujin采纳,获得10
1秒前
小启发布了新的文献求助10
2秒前
成xy123_发布了新的文献求助10
3秒前
hehexi发布了新的文献求助10
4秒前
Owen应助嘿嘿哒采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
蒋瑞轩发布了新的文献求助10
6秒前
传奇3应助小莱采纳,获得10
6秒前
6秒前
xldongcn发布了新的文献求助10
6秒前
李李李子发布了新的文献求助10
6秒前
SciGPT应助yvonne采纳,获得10
7秒前
8秒前
9秒前
11秒前
石土土完成签到,获得积分10
11秒前
周明明发布了新的文献求助10
11秒前
苗玉发布了新的文献求助10
11秒前
11秒前
11秒前
13秒前
13秒前
13秒前
hujin发布了新的文献求助10
13秒前
13秒前
liuf发布了新的文献求助10
13秒前
14秒前
蒋瑞轩完成签到,获得积分10
14秒前
yznfly举报tyyldr2015求助涉嫌违规
14秒前
14秒前
石土土发布了新的文献求助10
15秒前
16秒前
16秒前
xxl发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649626
求助须知:如何正确求助?哪些是违规求助? 4778871
关于积分的说明 15049592
捐赠科研通 4808672
什么是DOI,文献DOI怎么找? 2571696
邀请新用户注册赠送积分活动 1528088
关于科研通互助平台的介绍 1486851