Isotonic mechanism for exponential family estimation in machine learning peer review

等渗 机制(生物学) 计算机科学 人工智能 医学 内科学 哲学 认识论
作者
Yuling Yan,Weijie Su,Jianqing Fan
出处
期刊:Journal of The Royal Statistical Society Series B-statistical Methodology [Oxford University Press]
被引量:1
标识
DOI:10.1093/jrsssb/qkaf025
摘要

Abstract In 2023, the International Conference on Machine Learning (ICML) required authors with multiple submissions to rank their papers by perceived quality. In this paper, we leverage these author-specified rankings to enhance peer review in machine learning and artificial intelligence conferences by extending the isotonic mechanism to exponential family distributions. This mechanism produces adjusted scores closely aligned with the original scores while strictly adhering to the author-specified rankings. An appealing feature of the mechanism is its applicability to a broad class of exponential family distributions without requiring knowledge of the specific distribution form. We show an author is incentivized to provide accurate rankings if her utility is a convex additive function of the adjusted review scores. For a subclass of exponential family distributions, we prove that an author reports truthfully only if elicitation involves pairwise comparisons between her submissions, thus highlighting the optimality of rankings in truthful information elicitation. Moreover, the adjusted scores significantly enhance estimation accuracy compared to original scores and achieve near-minimax optimality when ground-truth scores have bounded total variation. We conclude with a numerical analysis using ICML 2023 ranking data, demonstrating substantial estimation improvements in approximating a proxy ground-truth quality of submissions via the isotonic mechanism.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YZZ完成签到,获得积分10
1秒前
2秒前
冒泡完成签到,获得积分10
3秒前
18524407273完成签到,获得积分10
3秒前
彩色黑米完成签到 ,获得积分10
3秒前
小格子发布了新的文献求助10
3秒前
认真的砖头完成签到 ,获得积分10
4秒前
luojimao完成签到,获得积分10
4秒前
海猫食堂完成签到,获得积分10
5秒前
蕴蝶完成签到,获得积分10
5秒前
5秒前
5秒前
无情的水香完成签到 ,获得积分10
6秒前
7秒前
PPP发布了新的文献求助10
7秒前
丘比特应助HJJHJH采纳,获得10
8秒前
烟花应助luogan采纳,获得10
8秒前
SSS木南完成签到,获得积分10
8秒前
cheng4046发布了新的文献求助10
8秒前
9秒前
火星上送终完成签到,获得积分10
9秒前
lululala发布了新的文献求助10
9秒前
10秒前
zzqzzqzzq发布了新的文献求助10
10秒前
康康完成签到,获得积分10
12秒前
小米发布了新的文献求助10
13秒前
你好好好完成签到,获得积分10
13秒前
思源应助左边向北采纳,获得10
15秒前
15秒前
Ever发布了新的文献求助10
15秒前
研友_ZzaKqn完成签到,获得积分0
16秒前
phoenixtang发布了新的文献求助10
16秒前
17秒前
qixingbao07126完成签到,获得积分10
18秒前
不如看海完成签到 ,获得积分10
18秒前
FashionBoy应助你好好好采纳,获得30
18秒前
小马甲应助zzqzzqzzq采纳,获得10
18秒前
20秒前
王哈哈发布了新的文献求助10
20秒前
21秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4087270
求助须知:如何正确求助?哪些是违规求助? 3626253
关于积分的说明 11498883
捐赠科研通 3339349
什么是DOI,文献DOI怎么找? 1835883
邀请新用户注册赠送积分活动 904075
科研通“疑难数据库(出版商)”最低求助积分说明 822045