电解质
法拉第效率
阴极
相间
锂(药物)
材料科学
纳米-
烷基
离子
化学工程
纳米技术
大气温度范围
化学
电极
有机化学
物理化学
复合材料
医学
物理
工程类
内分泌学
生物
气象学
遗传学
作者
Jinwang Huang,Lulu Song,Bo Zhang,Yuxiang Zhao,Yulong Qian,Chunyan Wang,Xiushen Ye,Fayan Zhu,Wanzhen Zhang,Yongqian Shu,Xueting Li,Hongbo Zhang,Li Wu,Tiezhu Ma,Xinrui Zhang
标识
DOI:10.1002/adma.202500394
摘要
Abstract The cathode‐electrolyte interphase directly influences the wide‐temperature performance of lithium‐ion batteries, particularly long‐term cycle performance. However, improving both high‐ and low‐temperature properties of cathode often requires distinct approaches, making it challenging to unify these strategies. In this work, an interfacial‐driven strategy on the cathode surface is designed with nano‐Mg(OH) 2 with Tween80 (nano‐Mg(OH) 2 @Tween80). Tween80 serves as the framework of the weak‐linked flexible confined space for preparing ultrafine nano‐Mg(OH) 2 and then adsorbs in situ onto the nano‐Mg(OH) 2 . In the cell assembled with nano‐Mg(OH) 2 @Tween80 modified LiNi 0.5 Co 0.2 Mn 0.3 O 2 , the alkyl‐chain sway of Tween80 molecules accelerates electrolyte diffusion on cathode surface. Hence, both the timely formation of a stable and conductive Mg‐rich interphase layer and rapid lithium‐ion transfer are achieved, leading to the co‐improvement of high/low‐temperature performances. The half‐cell with the addition of nano‐Mg(OH) 2 @Tween80, maintains over 70 mAh·g −1 and 90% Coulombic efficiency after 1000 cycles at 60 °C, and keeps 80 mAh·g −1 with 99% Coulombic efficiency after 500 cycles at −5 °C, even still very stable at −15 °C.
科研通智能强力驱动
Strongly Powered by AbleSci AI