钙钛矿(结构)
激光器
材料科学
光电子学
化学
光学
物理
结晶学
作者
Zhicheng Guan,Hengyu Zhang,Guang Yang
标识
DOI:10.1088/1674-4926/24100029
摘要
Abstract Perovskite materials have emerged as promising candidates for various optoelectronic applications owing to their remarkable optoelectronic properties and easy solution processing. Metal halide perovskites, as direct-bandgap semiconductors, show an excellent class of optical gain media, which makes them applicable to the development of low-threshold or even thresholdless lasers. This mini review explores recent advances in perovskite-based laser technology, which have led to chiral single-mode microlasers, low-threshold, external-cavity-free lasing devices at room temperature, and other innovative device architectures. Including self-assembled CsPbBr 3 microwires that enable edge lasing. Realized continuous-wave (CW) pumped lasing by perovskite material pushes the research of electrically driven perovskite lasers. The capacity to regulate charge transport in halide perovskites further enhances their applicability in optoelectronic systems. The ongoing integration of perovskite materials with advanced photonic structures holds excellent potential for future innovations in laser technology and photovoltaics. We also highlight the transformative potential of perovskite materials in advancing the next generation of efficient and integrated optoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI