Uncertainty quantification for CT dosimetry based on 10 281 subjects using automatic image segmentation and fast Monte Carlo calculations

剂量学 蒙特卡罗方法 医学影像学 分割 人口 扫描仪 计算机科学 迭代重建 放射治疗计划 核医学 医学 人工智能 医学物理学 放射科 放射治疗 统计 数学 环境卫生
作者
Zirui Ye,Bei Yao,Haoran Zheng,Tao Li,Ripeng Wang,Yankui Chang,Zhi Chen,Yingming Zhao,Wei Wei,Xie George Xu
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17796
摘要

Computed tomography (CT) scans are a major source of medical radiation exposure worldwide. In countries like China, the frequency of CT scans has grown rapidly, thus making available a large volume of organ dose information. With modern computational methods, we are now able to overcome challenges in automatic organ segmentation and rapid Monte Carlo (MC) dose calculations. We hypothesize that it is possible to process an extremely large number of patient-specific organ dose datasets in order to quantify and understand the range of CT dose uncertainties associated with inter-individual variability. In this paper, we present a novel method that combines automatic image segmentation with GPU-accelerated MC simulations to reconstruct patient-specific organ doses for a large cohort of 10 281 individuals (6419 males and 3862 females) who underwent CT examinations at a Chinese hospital. Through data mining and comparison, we analyze organ dose distribution patterns to investigate possible uncertainty in CT dosimetry methods that rely on simplified phantoms population-averaged patient models. Our data-processing workflow involved three key steps. First, we collected and anonymized CT images and subjects' health metrics (age, sex, height, and weight) from the hospital's database. Second, we utilized a deep learning-based segmentation tool, DeepContour, to automatically delineate organs from the CT images, and then performed GPU-accelerated MC organ dose calculations using a validated GE scanner model and the ARCEHR-CT software. Finally, we conducted a comprehensive statistical analysis of doses for eight organs: lungs, heart, breasts, esophagus, stomach, liver, pancreas, and spleen. It took 16 days to process data for the entire cohorts-at a speed of 600 individual CT dose datasets per day-using a single NVIDIA RTX 3080 GPU card. The results show profound inter-individual variability in organ doses, even when only comparing subjects having similar body mass index (BMI) or water equivalent diameter (WED). Statistical analyses indicate that the data fitting-a method often used in analyzing the trend in CT dosimetry-can lead to relative errors exceeding as much as 50% for the data studied for this cohort. Statistical analyses also reveal quantitative correlations between organ doses and health metrics, including weight, BMI, WED, and size-specific dose estimate (SSDE), suggesting that these factors may still serve as surrogates for indirect dose estimation as long as the uncertainty is fully understood and tolerable. Interestingly, the CT scanner's tube current modulation reduces the average organ doses for the cohort as expected, but the individual organ dose variability remains similar to those from scans having a fixed tube current. Using newly available computational tools, this study has demonstrated the feasibility of conducting big data analysis towards CT dose data mining and uncertainty quantification. Results show that inter-individual variability is significant and can be taken into account in an effort to improve CT dosimetry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
飞阳发布了新的文献求助10
1秒前
1秒前
xdwu发布了新的文献求助10
1秒前
黑木完成签到 ,获得积分10
1秒前
Lucas应助如意白猫采纳,获得10
2秒前
2秒前
七栀发布了新的文献求助10
2秒前
CodeCraft应助ziwnbn采纳,获得10
2秒前
2秒前
zzz完成签到,获得积分20
2秒前
充电宝应助复杂的小鸭子采纳,获得10
2秒前
2秒前
小蘑菇应助Dawn采纳,获得10
4秒前
4秒前
4秒前
浮游应助屋子采纳,获得10
5秒前
5秒前
过丫丫发布了新的文献求助10
5秒前
李白发布了新的文献求助10
5秒前
paul发布了新的文献求助10
5秒前
李66发布了新的文献求助10
5秒前
英勇的婷子完成签到 ,获得积分10
6秒前
清爽水风发布了新的文献求助20
6秒前
miio发布了新的文献求助10
7秒前
7秒前
123456完成签到,获得积分10
7秒前
今后应助yu采纳,获得10
7秒前
7秒前
zzz发布了新的文献求助10
8秒前
遇见发布了新的文献求助10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
优雅老六应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
8秒前
李健应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2025山东省直机关硬笔书法展示活动获奖名单 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4939502
求助须知:如何正确求助?哪些是违规求助? 4205878
关于积分的说明 13072145
捐赠科研通 3984308
什么是DOI,文献DOI怎么找? 2181586
邀请新用户注册赠送积分活动 1197381
关于科研通互助平台的介绍 1109600