Clinically Diagnose Asthma and Monitor Its Severity Using an Ultrasensitive Chemiresistive Nitric Oxide (NO) Gas Sensor via Exhaled Breath Analysis Assisted by Pattern Recognition

呼出气一氧化氮 哮喘 气体分析呼吸 一氧化氮 医学 气体分析 呼出的空气 麻醉 生物医学工程 内科学 化学 色谱法 肺活量测定 毒理 生物 解剖
作者
Peisi Yin,Xiaoyu You,Xinyue Cui,Zhipeng Tang,Shanshan Yu,Huaian Fu,Fei Song,Kai Zhang,Xin Zhao,Lipeng Wang,Huanhuan Tian,Xiaoyu Feng,Ping Li,Jinping Liu,Nailiang Zhai,Qiang Jing,Shasha Han,Bo Liu
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:10 (6): 4491-4505 被引量:2
标识
DOI:10.1021/acssensors.5c00772
摘要

Fractional exhaled nitric oxide (FeNO) is widely recognized as a reliable biomarker for asthma. FeNO sensors can help diagnose asthma and monitor its severity. In this study, an ultrasensitive chemiresistive gas sensor, sensitive to the key breath biomarkers of asthma─nitric oxide (NO) and H2S─was fabricated using Ag-decorated ZnO. The sensor exhibits detection limits of 5 ppb for NO and 50 ppb for H2S, and it can discriminate 10 ppb NO and 60 ppb H2S from the exhaled breaths. Clinically, a total of 80 exhaled breath samples were collected and tested, including 40 from asthma patients (APs) and 40 from healthy control subjects (HCs). The AP group was effectively distinguished from the HC group using a pattern recognition algorithm (PCA), attributed to the sensor's beneficial cross-sensitivity to asthma biomarkers. A diagnostic model distinguishing asthma from non-asthma was constructed using the support vector machine (SVM) algorithm, achieving an overall accuracy, sensitivity, and specificity of 0.81, 0.88, and 0.75, respectively. The area under the curve (AUC) value for all subjects in the receiver operating characteristic (ROC) curve was 0.92. The severity of asthma in three inpatients was monitored using the clinical evaluation method of diurnal peak expiratory flow (PEF) variation, alongside our sensor. The sensor's response values exhibited a strong correlation (r = -0.74 (p < 0.05)) with the diurnal PEF variation values. To validate the sensor's diagnostic capability, six breath samples from both HCs and APs were tested simultaneously using our sensor and a commercial electrochemical NO sensor utilized clinically. With r = -0.98 (p < 0.05) and R2 = 0.94, a strong linear relationship between two types of response values was observed, confirming the sensor's accuracy and reliability in detecting NO concentrations in exhaled breath. Theoretical adsorption models of NO on the surface of the sensor were constructed using DFT calculations to elucidate the mechanisms driving the sensor's ultrasensitivity. Overall, the sensor demonstrates a significant potential for use in clinical practice to diagnose asthma and monitor its severity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
fanfan发布了新的文献求助10
1秒前
顾矜应助Rich_WH采纳,获得10
1秒前
羊玉林完成签到,获得积分10
2秒前
2秒前
vitals完成签到,获得积分10
2秒前
研友_VZG7GZ应助XUAN采纳,获得10
2秒前
uss完成签到,获得积分10
3秒前
赘婿应助望海潮采纳,获得10
3秒前
3秒前
是鹤发布了新的文献求助50
4秒前
zkkz完成签到,获得积分10
4秒前
彭彭发布了新的文献求助10
4秒前
激昂的青雪完成签到,获得积分10
5秒前
5秒前
yznfly应助CasterL采纳,获得20
5秒前
5秒前
here完成签到 ,获得积分10
5秒前
dudu不吃榴莲完成签到,获得积分20
5秒前
6秒前
纳纳椰发布了新的文献求助10
6秒前
ArcMayuri完成签到,获得积分10
6秒前
斯文败类应助早日发paper采纳,获得10
7秒前
7秒前
猪猪hero应助无语的夏烟采纳,获得10
7秒前
在水一方应助1111采纳,获得10
8秒前
zzyyzz完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
求学狗完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
wxr发布了新的文献求助10
10秒前
高贵的如曼应助iamcrazyboy采纳,获得10
10秒前
10秒前
yyy发布了新的文献求助10
10秒前
研友_VZG7GZ应助gorgeous采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479507
求助须知:如何正确求助?哪些是违规求助? 4580974
关于积分的说明 14377733
捐赠科研通 4509534
什么是DOI,文献DOI怎么找? 2471405
邀请新用户注册赠送积分活动 1457876
关于科研通互助平台的介绍 1431669