亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Classification of Cervical Spinal Stenosis using Deep Learning on CT Scans

医学 放射科 狭窄 颈椎 椎管狭窄 核医学 外科 腰椎
作者
Yulong Zhang,Jiawei Huang,Kaiyu Li,Hua-Lin Li,Xin-Xiao Lin,Hao-Bo Ye,Yuhan Chen,Naifeng Tian
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/brs.0000000000005414
摘要

Study Design. Retrospective study. Objective. To develop and validate a computed tomography-based deep learning(DL) model for diagnosing cervical spinal stenosis(CSS). Summary of Background Data. Although magnetic resonance imaging (MRI) is widely used for diagnosing CSS, its inherent limitations, including prolonged scanning time, limited availability in resource-constrained settings, and contraindications for patients with metallic implants, make computed tomography (CT) a critical alternative in specific clinical scenarios. The development of CT-based DL models for CSS detection holds promise in transcending the diagnostic efficacy limitations of conventional CT imaging, thereby serving as an intelligent auxiliary tool to optimize healthcare resource allocation. Methods. Paired CT/MRI images were collected. CT images were divided into training, validation, and test sets in an 8:1:1 ratio. The two-stage model architecture employed: (1) a Faster R-CNN-based detection model for localization, annotation, and extraction of regions of interest (ROI); (2) comparison of 16 convolutional neural network (CNN) models for stenosis classification to select the best-performing model. The evaluation metrics included accuracy, F1-score, and Cohen’s κ coefficient, with comparisons made against diagnostic results from physicians with varying years of experience. Results. In the multiclass classification task, four high-performing models (DL1-b0, DL2-121, DL3-101, and DL4-26d) achieved accuracies of 88.74%, 89.40%, 89.40%, and 88.08%, respectively. All models demonstrated >80% consistency with senior physicians and >70% consistency with junior physicians.In the binary classification task, the models achieved accuracies of 94.70%, 96.03%, 96.03%, and 94.70%, respectively. All four models demonstrated consistency rates slightly below 90% with junior physicians. However, when compared with senior physicians, three models (excluding DL4-26d) exhibited consistency rates exceeding 90%. Conclusions. The DL model developed in this study demonstrated high accuracy in CT image analysis of CSS, with a diagnostic performance comparable to that of senior physicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒸汽秋葵完成签到 ,获得积分10
1秒前
ff发布了新的文献求助10
2秒前
今后应助孙涛采纳,获得10
2秒前
ninomae完成签到 ,获得积分10
9秒前
17秒前
fei发布了新的文献求助10
20秒前
24秒前
Honsarn完成签到,获得积分10
28秒前
29秒前
yang完成签到,获得积分20
29秒前
pancake发布了新的文献求助10
29秒前
yyqx完成签到 ,获得积分10
31秒前
yang发布了新的文献求助30
34秒前
池雨完成签到 ,获得积分10
34秒前
34秒前
34秒前
34秒前
35秒前
聪慧鸡翅发布了新的文献求助10
39秒前
梦_筱彩完成签到 ,获得积分10
44秒前
45秒前
49秒前
51秒前
木子秀完成签到,获得积分10
55秒前
rita4616发布了新的文献求助10
56秒前
fei关闭了fei文献求助
56秒前
华仔应助哲别采纳,获得10
59秒前
搜集达人应助老实的友桃采纳,获得10
59秒前
Wuyx完成签到 ,获得积分10
1分钟前
1分钟前
隐形曼青应助rita4616采纳,获得10
1分钟前
zzk发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Rational发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Milktea123完成签到,获得积分10
1分钟前
小贾爱喝冰美式完成签到 ,获得积分10
1分钟前
nini完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549005
求助须知:如何正确求助?哪些是违规求助? 4634424
关于积分的说明 14634535
捐赠科研通 4575773
什么是DOI,文献DOI怎么找? 2509289
邀请新用户注册赠送积分活动 1485264
关于科研通互助平台的介绍 1456366