Explainable Alzheimer’s Disease Detection Using Linguistic Features from Automatic Speech Recognition

痴呆 抄写(语言学) 语音识别 计算机科学 语言模型 认知 自然语言处理 心理学 人工智能 疾病 医学 语言学 神经科学 哲学 病理
作者
Lijuan Tang,Zhenglin Zhang,Feifan Feng,Lizhuang Yang,Hai Li
出处
期刊:Dementia and Geriatric Cognitive Disorders [S. Karger AG]
卷期号:52 (4): 240-248
标识
DOI:10.1159/000531818
摘要

Alzheimer's disease (AD) is the most prevalent type of dementia and can cause abnormal cognitive function and progressive loss of essential life skills. Early screening is thus necessary for the prevention and intervention of AD. Speech dysfunction is an early onset symptom of AD patients. Recent studies have demonstrated the promise of automated acoustic assessment using acoustic or linguistic features extracted from speech. However, most previous studies have relied on manual transcription of text to extract linguistic features, which weakens the efficiency of automated assessment. The present study thus investigates the effectiveness of automatic speech recognition (ASR) in building an end-to-end automated speech analysis model for AD detection.We implemented three publicly available ASR engines and compared the classification performance using the ADReSS-IS2020 dataset. Besides, the SHapley Additive exPlanations algorithm was then used to identify critical features that contributed most to model performance.Three automatic transcription tools obtained mean word error rate texts of 32%, 43%, and 40%, respectively. These automated texts achieved similar or even better results than manual texts in model performance for detecting dementia, achieving classification accuracies of 89.58%, 83.33%, and 81.25%, respectively.Our best model, using ensemble learning, is comparable to the state-of-the-art manual transcription-based methods, suggesting the possibility of an end-to-end medical assistance system for AD detection with ASR engines. Moreover, the critical linguistic features might provide insight into further studies on the mechanism of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助zhaoyi采纳,获得10
1秒前
1秒前
芣苢完成签到 ,获得积分10
2秒前
周星星发布了新的文献求助10
3秒前
郭浩峰完成签到,获得积分10
3秒前
3秒前
4秒前
充电宝应助wtg采纳,获得10
4秒前
clinched完成签到,获得积分10
5秒前
5秒前
健忘之卉完成签到,获得积分10
5秒前
5秒前
6秒前
丢丢银发布了新的文献求助10
6秒前
库儿拉索完成签到,获得积分10
8秒前
8秒前
十七发布了新的文献求助10
9秒前
我是老大应助taotao采纳,获得10
10秒前
沫栀完成签到,获得积分10
11秒前
joleisalau发布了新的文献求助10
11秒前
黑米粥发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
灿灿的资源完成签到,获得积分10
13秒前
15秒前
sclzl发布了新的文献求助10
16秒前
16秒前
标致冰海完成签到 ,获得积分10
17秒前
18秒前
18秒前
举世惊鸿雁完成签到 ,获得积分10
18秒前
一杯半茶完成签到 ,获得积分10
18秒前
19秒前
20秒前
27完成签到 ,获得积分10
21秒前
zhaoyi发布了新的文献求助10
21秒前
biiing发布了新的文献求助10
21秒前
QPL发布了新的文献求助10
21秒前
赘婿应助实验室奇妙夜采纳,获得20
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458434
求助须知:如何正确求助?哪些是违规求助? 4564465
关于积分的说明 14295221
捐赠科研通 4489353
什么是DOI,文献DOI怎么找? 2459047
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424466