径向基函数
插值(计算机图形学)
人工神经网络
数学
多层感知器
高斯分布
层次RBF
反向
函数逼近
人工智能
算法
应用数学
模式识别(心理学)
计算机科学
运动(物理)
物理
几何学
量子力学
作者
Fatemeh Nassajian Mojarrad,Maria Han Veiga,Jan S. Hesthaven,Philipp Öffner
标识
DOI:10.1016/j.camwa.2023.05.005
摘要
The choice of the shape parameter highly effects the behaviour of radial basis function (RBF) approximations, as it needs to be selected to balance between the ill-conditioning of the interpolation matrix and high accuracy. In this paper, we demonstrate how to use neural networks to determine the shape parameters in RBFs. In particular, we construct a multilayer perceptron (MLP) trained using an unsupervised learning strategy, and use it to predict shape parameters for inverse multiquadric and Gaussian kernels. We test the neural network approach in RBF interpolation tasks and in a RBF-finite difference method in one and two-space dimensions, demonstrating promising results.
科研通智能强力驱动
Strongly Powered by AbleSci AI