PSRQSP: An effective approach for the interpretable prediction of quorum sensing peptide using propensity score representation learning

计算机科学 群体感应 机器学习 人工智能 标杆管理 预测建模 毒力 生物 营销 基因 业务 生物化学
作者
Phasit Charoenkwan,Pramote Chumnanpuen,Nalini Schaduangrat,Changmin Oh,Balachandran Manavalan,Watshara Shoombuatong
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:158: 106784-106784 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.106784
摘要

Quorum sensing peptides (QSPs) are microbial signaling molecules involved in several cellular processes, such as cellular communication, virulence expression, bioluminescence, and swarming, in various bacterial species. Understanding QSPs is essential for identifying novel drug targets for controlling bacterial populations and pathogenicity. In this study, we present a novel computational approach (PSRQSP) for improving the prediction and analysis of QSPs. In PSRQSP, we develop a novel propensity score representation learning (PSR) scheme. Specifically, we utilized the PSR approach to extract and learn a comprehensive set of estimated propensities of 20 amino acids, 400 dipeptides, and 400 g-gap dipeptides from a pool of scoring card method-based models. Finally, to maximize the utility of the propensity scores, we explored a set of optimal propensity scores and combined them to construct a final meta-predictor. Our experimental results showed that combining multiview propensity scores was more beneficial for identifying QSPs than the conventional feature descriptors. Moreover, extensive benchmarking experiments based on the independent test were sufficient to demonstrate the predictive capability and effectiveness of PSRQSP by outperforming the conventional ML-based and existing methods, with an accuracy of 94.44% and AUC of 0.967. PSR-derived propensity scores were employed to determine the crucial physicochemical properties for a better understanding of the functional mechanisms of QSPs. Finally, we constructed an easy-to-use web server for the PSRQSP (http://pmlabstack.pythonanywhere.com/PSRQSP). PSRQSP is anticipated to be an efficient computational tool for accelerating the data-driven discovery of potential QSPs for drug discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祥瑞发布了新的文献求助10
2秒前
3秒前
SciGPT应助rere采纳,获得10
3秒前
CipherSage应助12采纳,获得10
3秒前
充电宝应助火星天采纳,获得10
7秒前
中岛悠斗完成签到,获得积分10
8秒前
科研通AI5应助丢丢银采纳,获得10
10秒前
野性的曼香完成签到 ,获得积分10
11秒前
13秒前
怪物时似完成签到 ,获得积分10
15秒前
moodys完成签到,获得积分10
15秒前
17秒前
舒先生完成签到,获得积分10
17秒前
大豪子完成签到 ,获得积分10
17秒前
12发布了新的文献求助10
20秒前
Akim应助细心的小鸽子采纳,获得10
22秒前
23秒前
丢丢银发布了新的文献求助10
23秒前
Owen应助kkkkkw采纳,获得10
23秒前
24秒前
桐桐应助假面绅士采纳,获得10
25秒前
Owen应助NXK采纳,获得10
27秒前
27秒前
29秒前
丢丢银完成签到,获得积分10
30秒前
冷傲雍发布了新的文献求助10
30秒前
张宏宇发布了新的文献求助10
33秒前
bkagyin应助fl采纳,获得10
33秒前
Akim应助科研通管家采纳,获得10
34秒前
我是老大应助科研通管家采纳,获得10
34秒前
赘婿应助科研通管家采纳,获得10
34秒前
踏实无敌应助科研通管家采纳,获得30
34秒前
李健应助科研通管家采纳,获得10
34秒前
乐乐应助科研通管家采纳,获得10
34秒前
aprilvanilla应助科研通管家采纳,获得10
34秒前
酷波er应助科研通管家采纳,获得10
34秒前
aprilvanilla应助科研通管家采纳,获得10
34秒前
Owen应助科研通管家采纳,获得10
35秒前
Jasper应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776730
求助须知:如何正确求助?哪些是违规求助? 3322167
关于积分的说明 10208975
捐赠科研通 3037401
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797622
科研通“疑难数据库(出版商)”最低求助积分说明 757921