A Multi-Target Regression Method to Predict Element Concentrations in Tomato Leaves Using Hyperspectral Imaging

高光谱成像 回归 人工智能 模式识别(心理学) 回归分析 遥感 计算机科学 数学 计算机视觉 统计 地质学
作者
Takehiro Kamiya,Andrés Aguilar Ariza,Naoyuki Sotta,Toru Fujiwara,Wei Guo
出处
期刊:Plant phenomics [AAAS00]
卷期号:6: 0146-0146 被引量:8
标识
DOI:10.34133/plantphenomics.0146
摘要

Recent years have seen the development of novel, rapid, and inexpensive techniques for collecting plant data to monitor the nutritional status of crops. These techniques include hyperspectral imaging, which has been widely used in combination with machine learning models to predict element concentrations in plants. When there are multiple elements, the machine learning models are trained with spectral features to predict individual element concentrations; this type of single-target prediction is known as single-target regression. Although this method can achieve reliable accuracy for some elements, there are others that remain less accurate. We aimed to improve the accuracy of element concentration predictions by using a multi-target regression method that sequentially augmented the original input features (hyperspectral imaging) by chaining the predicted element concentration values. To evaluate the multi-target method, the concentrations of 17 elements in tomato leaves were predicted and compared with the single-target regression results. We trained 5 machine learning models with hyperspectral data and predicted element concentration values and found a significant improvement in the prediction accuracy for 10 elements (Mg, P, S, Mn, Fe, Co, Cu, Sr, Mo, and Cd). Furthermore, our multi-target regression method outperformed single-target predictions by increasing the coefficient of determination (R2) for elements such as Mn, Cu, Co, Fe, and Mg by 12.5%, 10.3%, 11%, 10%, and 8.4%, respectively. Hence, our multi-target method can improve the accuracy of predicting 10-element concentrations compared to single-target regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
SciGPT应助直率孤风采纳,获得10
刚刚
1秒前
Ava应助xiang采纳,获得10
1秒前
1秒前
2秒前
jing完成签到,获得积分20
2秒前
123完成签到,获得积分20
3秒前
homer完成签到,获得积分0
5秒前
超级yang完成签到,获得积分10
6秒前
LTDJYYD发布了新的文献求助10
7秒前
8秒前
九九驳回了小明应助
8秒前
燃之一手完成签到 ,获得积分10
8秒前
帅气一刀完成签到,获得积分10
9秒前
11秒前
无花果应助青青在努力采纳,获得10
12秒前
英俊的铭应助萤火采纳,获得10
13秒前
Akim应助sherry采纳,获得10
14秒前
cosy完成签到 ,获得积分10
14秒前
liang发布了新的文献求助10
15秒前
海大鱼发布了新的文献求助10
15秒前
8R60d8应助bb采纳,获得10
16秒前
17秒前
FanWoo完成签到,获得积分10
18秒前
哈基米应助单纯乞采纳,获得20
18秒前
19秒前
旺旺小仙完成签到,获得积分10
19秒前
彭于晏应助zht采纳,获得10
19秒前
大个应助Anyone采纳,获得10
21秒前
21秒前
GuMingyang发布了新的文献求助10
22秒前
22秒前
Christina完成签到,获得积分10
22秒前
qjq琪发布了新的文献求助10
23秒前
上官若男应助阳光采纳,获得10
23秒前
舒服的踏歌完成签到,获得积分10
23秒前
旷野完成签到 ,获得积分10
24秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496914
求助须知:如何正确求助?哪些是违规求助? 4594564
关于积分的说明 14445334
捐赠科研通 4527172
什么是DOI,文献DOI怎么找? 2480728
邀请新用户注册赠送积分活动 1465186
关于科研通互助平台的介绍 1437878