误传
计算机科学
背景(考古学)
理解力
短语
数据科学
人工智能
计算机安全
程序设计语言
古生物学
生物
作者
Dorian Quelle,Alexandre Bovet
标识
DOI:10.3389/frai.2024.1341697
摘要
Automated fact-checking, using machine learning to verify claims, has grown vital as misinformation spreads beyond human fact-checking capacity. Large language models (LLMs) like GPT-4 are increasingly trusted to write academic papers, lawsuits, and news articles and to verify information, emphasizing their role in discerning truth from falsehood and the importance of being able to verify their outputs. Understanding the capacities and limitations of LLMs in fact-checking tasks is therefore essential for ensuring the health of our information ecosystem. Here, we evaluate the use of LLM agents in fact-checking by having them phrase queries, retrieve contextual data, and make decisions. Importantly, in our framework, agents explain their reasoning and cite the relevant sources from the retrieved context. Our results show the enhanced prowess of LLMs when equipped with contextual information. GPT-4 outperforms GPT-3, but accuracy varies based on query language and claim veracity. While LLMs show promise in fact-checking, caution is essential due to inconsistent accuracy. Our investigation calls for further research, fostering a deeper comprehension of when agents succeed and when they fail.
科研通智能强力驱动
Strongly Powered by AbleSci AI