Brain tumor classification from MRI scans: a framework of hybrid deep learning model with Bayesian optimization and quantum theory-based marine predator algorithm

人工智能 计算机科学 深度学习 机器学习 自编码 超参数 模式识别(心理学) 人工神经网络 卷积神经网络 分类器(UML)
作者
Muhammad Sami Ullah,Muhammad Attique Khan,Anum Masood,Olfa Mzoughi,Oumaima Saidani,Nazik Alturki
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14: 1335740-1335740 被引量:43
标识
DOI:10.3389/fonc.2024.1335740
摘要

Brain tumor classification is one of the most difficult tasks for clinical diagnosis and treatment in medical image analysis. Any errors that occur throughout the brain tumor diagnosis process may result in a shorter human life span. Nevertheless, most currently used techniques ignore certain features that have particular significance and relevance to the classification problem in favor of extracting and choosing deep significance features. One important area of research is the deep learning-based categorization of brain tumors using brain magnetic resonance imaging (MRI). This paper proposes an automated deep learning model and an optimal information fusion framework for classifying brain tumor from MRI images. The dataset used in this work was imbalanced, a key challenge for training selected networks. This imbalance in the training dataset impacts the performance of deep learning models because it causes the classifier performance to become biased in favor of the majority class. We designed a sparse autoencoder network to generate new images that resolve the problem of imbalance. After that, two pretrained neural networks were modified and the hyperparameters were initialized using Bayesian optimization, which was later utilized for the training process. After that, deep features were extracted from the global average pooling layer. The extracted features contain few irrelevant information; therefore, we proposed an improved Quantum Theory-based Marine Predator Optimization algorithm (QTbMPA). The proposed QTbMPA selects both networks’ best features and finally fuses using a serial-based approach. The fused feature set is passed to neural network classifiers for the final classification. The proposed framework tested on an augmented Figshare dataset and an improved accuracy of 99.80%, a sensitivity rate of 99.83%, a false negative rate of 17%, and a precision rate of 99.83% is obtained. Comparison and ablation study show the improvement in the accuracy of this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dongdong发布了新的文献求助10
刚刚
海鱼发布了新的文献求助30
刚刚
幽逸发布了新的文献求助10
1秒前
拾一发布了新的文献求助10
1秒前
小南发布了新的文献求助10
1秒前
卧镁铀钳完成签到 ,获得积分10
1秒前
2秒前
null应助VCDGG采纳,获得10
2秒前
小明完成签到,获得积分10
2秒前
充电宝应助Bio采纳,获得10
2秒前
汪蔓蔓关注了科研通微信公众号
2秒前
Akim应助dove00采纳,获得10
3秒前
Water发布了新的文献求助10
3秒前
3秒前
张鑫发布了新的文献求助10
4秒前
LDD完成签到,获得积分10
4秒前
4秒前
迷人紫寒完成签到,获得积分10
4秒前
4秒前
在水一方应助涅爹采纳,获得10
4秒前
豆豆发布了新的文献求助10
5秒前
5秒前
5秒前
白白嫩嫩完成签到,获得积分10
5秒前
6秒前
兔子发布了新的文献求助10
6秒前
tan发布了新的文献求助10
6秒前
烟花应助兴奋芷采纳,获得10
7秒前
tatawo28完成签到 ,获得积分10
7秒前
7秒前
伯赏无极发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
azkl发布了新的文献求助10
9秒前
三木发布了新的文献求助10
9秒前
小二郎应助安谢采纳,获得10
9秒前
体贴紫发布了新的文献求助10
9秒前
lyznbhh发布了新的文献求助10
9秒前
zhangzhuopu发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430023
求助须知:如何正确求助?哪些是违规求助? 4543319
关于积分的说明 14186314
捐赠科研通 4461414
什么是DOI,文献DOI怎么找? 2446146
邀请新用户注册赠送积分活动 1437342
关于科研通互助平台的介绍 1414359