亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FMFN: A Fuzzy Multimodal Fusion Network for Emotion Recognition in Ensemble Conducting

计算机科学 人工智能 模糊逻辑 情绪识别 传感器融合 机器学习 模式识别(心理学) 语音识别
作者
Xiao Han,Fuyang Chen,Junrong Ban
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:6
标识
DOI:10.1109/tfuzz.2024.3373125
摘要

Conducting and interacting with an orchestra is a multimodal process that integrates channels such as music, visual cues, posture, and gestures to convey artistic intent accurately. For robots, discerning human emotions from these channels can enhance human-machine interactions. Currently, gesture recognition systems in orchestras focus more on rhythm, speed, and dynamics, while studying emotional factors in orchestra conducting music requires more profound research. We introduced the Facial Expression and Orchestra Gesture Emotion (FEGE) dataset, consisting of eight different emotions for recognition. This paper introduces a Fuzzy Multimodal Fusion Network (FMFN) based on fuzzy logic, which operates in multi-feature spaces and is designed for emotion recognition in bimodal tasks involving facial expressions and orchestra-conducting gestures. The network maps facial expressions and gestures into a multi-feature space through bimodal processing, learns unique and shared representations, and decodes them using classifiers optimized by FMFN parameters. Finally, it processes data uncertainty and fuzziness using a fuzzy logic system, improving the classification decision process to enhance the robustness and adaptability of emotion recognition tasks in bimodal visual modalities. Experimental results on the FEGE dataset confirmed the effectiveness of our network. The proposed bimodal fusion network achieved an accuracy of 89.16% in bimodal emotion recognition, which is approximately a 21% improvement over single-modal recognition results. This approach can also be better applied to human-machine interaction systems, particularly in orchestra conducting training, aiming to enhance the most critical emotional factors conveyed during the conducting process, thus elevating the depth of artistic intent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
9527应助科研通管家采纳,获得10
刚刚
丘比特应助af采纳,获得20
9秒前
NexusExplorer应助丽优采纳,获得10
16秒前
21秒前
23秒前
24秒前
25秒前
26秒前
丽优发布了新的文献求助10
29秒前
丽优发布了新的文献求助10
29秒前
丽优发布了新的文献求助10
29秒前
丽优发布了新的文献求助10
29秒前
丽优发布了新的文献求助10
29秒前
37秒前
coco完成签到,获得积分20
41秒前
52秒前
Orange应助罗莹洁采纳,获得10
58秒前
af发布了新的文献求助20
59秒前
传奇3应助勤劳致富采纳,获得10
1分钟前
af完成签到,获得积分10
1分钟前
心灵美的大山完成签到,获得积分10
1分钟前
Anoxra完成签到 ,获得积分10
1分钟前
科目三应助xwz626采纳,获得30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
田様应助丽优采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
丽优发布了新的文献求助10
2分钟前
2分钟前
xwz626发布了新的文献求助30
2分钟前
团子完成签到 ,获得积分10
2分钟前
浮游应助jj采纳,获得10
3分钟前
科目三应助心灵美的大山采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426463
求助须知:如何正确求助?哪些是违规求助? 4540214
关于积分的说明 14171846
捐赠科研通 4457975
什么是DOI,文献DOI怎么找? 2444749
邀请新用户注册赠送积分活动 1435805
关于科研通互助平台的介绍 1413245