Novel adaptive quantization methodology for 8-bit floating-point DNN training

计算机科学 浮点型 量化(信号处理) 算法 人工智能
作者
Mohammad Hassani Sadi,Chirag Sudarshan,Norbert Wehn
出处
期刊:Design Automation for Embedded Systems [Springer Nature]
卷期号:28 (2): 91-110 被引量:2
标识
DOI:10.1007/s10617-024-09282-2
摘要

Abstract There is a high energy cost associated with training Deep Neural Networks (DNNs). Off-chip memory access contributes a major portion to the overall energy consumption. Reduction in the number of off-chip memory transactions can be achieved by quantizing the data words to low data bit-width (E.g., 8-bit). However, low-bit-width data formats suffer from a limited dynamic range, resulting in reduced accuracy. In this paper, a novel 8-bit Floating Point (FP8) data format quantized DNN training methodology is presented, which adapts to the required dynamic range on-the-fly. Our methodology relies on varying the bias values of FP8 format to fit the dynamic range to the required range of DNN parameters and input feature maps. The range fitting during the training is adaptively performed by an online statistical analysis hardware unit without stalling the computation units or its data accesses. Our approach is compatible with any DNN compute cores without any major modifications to the architecture. We propose to integrate the new FP8 quantization unit in the memory controller. The FP32 data from the compute core are converted to FP8 in the memory controller before writing to the DRAM and converted back after reading the data from DRAM. Our results show that the DRAM access energy is reduced by 3.07 $$\times $$ × while using an 8-bit data format instead of using 32-bit. The accuracy loss of the proposed methodology with 8-bit quantized training is $$\approx 1\%$$ 1 % for various networks with image and natural language processing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爬行风完成签到,获得积分10
刚刚
Jayson发布了新的文献求助10
1秒前
YUJIALING完成签到 ,获得积分10
1秒前
ding完成签到,获得积分10
2秒前
GC发布了新的文献求助50
2秒前
3秒前
3秒前
英俊的铭应助窗外的花筏采纳,获得10
3秒前
花牛完成签到 ,获得积分10
4秒前
酷波er应助2595756226采纳,获得10
4秒前
赵泽鹏完成签到,获得积分20
5秒前
lizhi完成签到,获得积分10
5秒前
macarthur完成签到,获得积分10
5秒前
延陵君应助科研通管家采纳,获得30
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
Zx_1993应助科研通管家采纳,获得20
6秒前
Akim应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得30
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得30
7秒前
勤奋傲云完成签到,获得积分10
7秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
wh应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600235
求助须知:如何正确求助?哪些是违规求助? 4685911
关于积分的说明 14840612
捐赠科研通 4675789
什么是DOI,文献DOI怎么找? 2538581
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471162