Physics-guided Deep Learning for Distribution Network SE

深度学习 计算机科学 分布(数学) 人工智能 数学教育 数学 数学分析
作者
Shiqi Chen,Dechang Yang,Payman Dehghanian
标识
DOI:10.1109/icnepe60694.2023.10429157
摘要

With the rapid advancement of modern power systems, the structure and operation of the grid have become increasingly complex, demanding higher levels of real-time accuracy and efficiency in state estimation (SE). To address the limitations of traditional SE methods for distribution networks, which often rely heavily on model precision, exhibit lower estimation accuracy, and have slower response times, a novel approach called Physics-Guided Temporal Convolutional Network (PGTCN) is proposed. The PGTCN method combines the strengths of data-driven techniques with the physical advantages of model-driven approaches. It begins by training a Temporal Convolutional Network (TCN) model using historical operational data from the distribution network. The model's predictions of the state variables are then integrated into the power flow equations, allowing for the examination of their consistency with the underlying physical relationships. Through this process, the PGTCN model achieves synergy between data-driven and model-driven methodologies, resulting in higher accuracy and improved estimation precision. Simulations conducted on a three-phase unbalanced distribution system with IEEE 14 nodes demonstrate the superior performance of the proposed SE method. Overall, the PGTCN approach offers a promising solution to the challenges posed by the ever-evolving landscape of modern power systems, promptly ensuring robust and accurate SE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
txy37完成签到,获得积分10
1秒前
1秒前
scvrl完成签到,获得积分10
3秒前
4秒前
4秒前
笔尖划痕发布了新的文献求助10
4秒前
4秒前
沈建文发布了新的文献求助10
5秒前
胖达发布了新的文献求助10
5秒前
ak发布了新的文献求助10
6秒前
7秒前
orange2806完成签到 ,获得积分20
8秒前
mmz完成签到 ,获得积分10
9秒前
yusuf发布了新的文献求助10
11秒前
13333完成签到 ,获得积分10
12秒前
13秒前
胖达完成签到,获得积分10
13秒前
旧雨新知完成签到 ,获得积分0
15秒前
慧子发布了新的文献求助10
16秒前
16秒前
16秒前
ll发布了新的文献求助10
19秒前
企鹅完成签到,获得积分20
20秒前
随遇而安完成签到 ,获得积分10
20秒前
Xieyusen发布了新的文献求助10
21秒前
22秒前
兔斯基完成签到,获得积分10
23秒前
Huang完成签到,获得积分10
23秒前
青雉发布了新的文献求助200
24秒前
薯片发布了新的文献求助10
26秒前
英俊的铭应助JiegeSCI采纳,获得10
27秒前
标致的方盒完成签到,获得积分10
27秒前
www999完成签到,获得积分10
28秒前
不争馒头争口气完成签到,获得积分10
28秒前
磊大彪完成签到 ,获得积分10
32秒前
梦梦完成签到,获得积分10
32秒前
薯片发布了新的文献求助10
32秒前
六月完成签到 ,获得积分10
35秒前
打打应助亚亚采纳,获得10
36秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843823
求助须知:如何正确求助?哪些是违规求助? 3386203
关于积分的说明 10544094
捐赠科研通 3106943
什么是DOI,文献DOI怎么找? 1711344
邀请新用户注册赠送积分活动 824042
科研通“疑难数据库(出版商)”最低求助积分说明 774409