亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deciphering spatial domains from spatially resolved transcriptomics with Siamese graph autoencoder

聚类分析 自编码 计算机科学 模式识别(心理学) 空间分析 数据挖掘 判别式 标杆管理 图形 人工智能 鉴定(生物学) 深度学习 数学 理论计算机科学 生物 统计 植物 营销 业务
作者
Lei Cao,Chao Yang,Luni Hu,Wenjian Jiang,Yating Ren,Tianyi Xia,Mengyang Xu,Yishuai Ji,Mei Li,Xun Xu,Yuxiang Li,Yong Zhang,Shuangsang Fang
出处
期刊:GigaScience [Oxford University Press]
卷期号:13 被引量:5
标识
DOI:10.1093/gigascience/giae003
摘要

Abstract Background Cell clustering is a pivotal aspect of spatial transcriptomics (ST) data analysis as it forms the foundation for subsequent data mining. Recent advances in spatial domain identification have leveraged graph neural network (GNN) approaches in conjunction with spatial transcriptomics data. However, such GNN-based methods suffer from representation collapse, wherein all spatial spots are projected onto a singular representation. Consequently, the discriminative capability of individual representation feature is limited, leading to suboptimal clustering performance. Results To address this issue, we proposed SGAE, a novel framework for spatial domain identification, incorporating the power of the Siamese graph autoencoder. SGAE mitigates the information correlation at both sample and feature levels, thus improving the representation discrimination. We adapted this framework to ST analysis by constructing a graph based on both gene expression and spatial information. SGAE outperformed alternative methods by its effectiveness in capturing spatial patterns and generating high-quality clusters, as evaluated by the Adjusted Rand Index, Normalized Mutual Information, and Fowlkes–Mallows Index. Moreover, the clustering results derived from SGAE can be further utilized in the identification of 3-dimensional (3D) Drosophila embryonic structure with enhanced accuracy. Conclusions Benchmarking results from various ST datasets generated by diverse platforms demonstrate compelling evidence for the effectiveness of SGAE against other ST clustering methods. Specifically, SGAE exhibits potential for extension and application on multislice 3D reconstruction and tissue structure investigation. The source code and a collection of spatial clustering results can be accessed at https://github.com/STOmics/SGAE/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Noob_saibot完成签到,获得积分10
1秒前
1秒前
赘婿应助羽毛采纳,获得10
2秒前
三人行发布了新的文献求助10
3秒前
年轻的蘑菇完成签到,获得积分20
8秒前
linsen发布了新的文献求助10
8秒前
一一一多完成签到 ,获得积分0
10秒前
黄婷萱完成签到,获得积分20
10秒前
12秒前
17秒前
CodeCraft应助明理的惜蕊采纳,获得30
19秒前
Cynthia完成签到 ,获得积分0
21秒前
三人行完成签到,获得积分10
21秒前
xuexi完成签到 ,获得积分10
22秒前
小满未满发布了新的文献求助10
22秒前
22秒前
乐观完成签到 ,获得积分10
22秒前
周以筠完成签到 ,获得积分10
32秒前
38秒前
fransiccarey完成签到,获得积分10
40秒前
斯文败类应助xwc采纳,获得10
43秒前
小黑超努力完成签到 ,获得积分10
45秒前
Criminology34应助Krstal采纳,获得10
46秒前
短短急个球完成签到,获得积分10
47秒前
48秒前
49秒前
52秒前
sa完成签到 ,获得积分10
57秒前
Krstal给Krstal的求助进行了留言
57秒前
58秒前
Nan语发布了新的文献求助10
1分钟前
香蕉觅云应助linsen采纳,获得10
1分钟前
南宫硕完成签到 ,获得积分10
1分钟前
xwc发布了新的文献求助10
1分钟前
晚星完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
明理的惜蕊完成签到,获得积分10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543024
求助须知:如何正确求助?哪些是违规求助? 4629142
关于积分的说明 14610916
捐赠科研通 4570411
什么是DOI,文献DOI怎么找? 2505751
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454364