Modeling and controlling of ship general section attitude adjustment process based on RBF neural network coupled with sliding mode algorithm

人工神经网络 章节(排版) 模式(计算机接口) 计算机科学 过程(计算) 算法 控制理论(社会学) 控制工程 人工智能 工程类 控制(管理) 操作系统
作者
Honggen Zhou,Chaoming Bao,Bo Deng,Lei Li
标识
DOI:10.1177/14750902241227301
摘要

Due to the advantages such as high efficiency, high precision, and the ability to reduce welding distortion, the block assembly method in shipbuilding possesses currently holds a dominant position in shipbuilding engineering. However, some key issues including low adjustment precision and slow control response speed urgently need to be resolved for the block assembly adjustment technology. This paper committed to solving the problems of inaccurate tracking of target displacement and slow control response speed in the vertical motion axis of the ship block joining equipment. A docking equipment control method based on the RBF neural network coupled with adaptive sliding mode algorithm was proposed. Firstly, an overview of the overall mechanics and control architecture of the ship block joining equipment was provided. Subsequently, a mathematical model for the transmission at the lifting mechanism was established. A sliding mode controller based on position control for the ship block joining equipment was designed for the transmission system. Then, the RBF neural network was employed to adjust the switching gain of the sliding mode controller and develop a self-adaptive sliding mode controller. Finally, simulations and verifications were conducted for multiple sets of input trajectories with different types. The results demonstrated that the combination of the neural network algorithm and the sliding mode control algorithm model presented in this paper reduces the system response time by 28.125% and improves the average motion tracking accuracy by 30.76%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助残剑月采纳,获得10
1秒前
1秒前
HuanG_sen完成签到 ,获得积分10
2秒前
NexusExplorer应助笨笨梦松采纳,获得10
2秒前
Jasper应助笨笨梦松采纳,获得10
2秒前
zxz发布了新的文献求助10
2秒前
田様应助sxx采纳,获得10
3秒前
3秒前
5秒前
香蕉觅云应助YincLin采纳,获得30
7秒前
Aaaaa完成签到 ,获得积分10
7秒前
Rsoup发布了新的文献求助10
8秒前
渔渔发布了新的文献求助10
8秒前
9秒前
9秒前
无花果应助elizabeth339采纳,获得10
10秒前
Nn完成签到,获得积分10
10秒前
喜悦的易槐完成签到,获得积分20
10秒前
小王发布了新的文献求助10
10秒前
10秒前
11秒前
我是老大应助zx采纳,获得10
11秒前
Anaturez发布了新的文献求助10
11秒前
秋刀鱼完成签到,获得积分10
12秒前
yamo完成签到,获得积分10
12秒前
vv发布了新的文献求助10
14秒前
14秒前
JJun完成签到,获得积分10
14秒前
善学以致用应助小仙人球采纳,获得10
14秒前
情怀应助马明旋采纳,获得10
15秒前
15秒前
yu发布了新的文献求助10
15秒前
Alvin完成签到,获得积分10
15秒前
15秒前
隐形幻竹完成签到,获得积分10
16秒前
17秒前
hh完成签到,获得积分10
17秒前
17秒前
孤独的嵩发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475748
求助须知:如何正确求助?哪些是违规求助? 4577367
关于积分的说明 14361817
捐赠科研通 4505326
什么是DOI,文献DOI怎么找? 2468542
邀请新用户注册赠送积分活动 1456230
关于科研通互助平台的介绍 1429896