Data-Driven Discovery of Gas-Selective Organic Linkers in Metal–Organic Frameworks for the Separation of Ethylene and Ethane

乙烯 吸附 选择性 金属有机骨架 分子 选择性吸附 量子化学 材料科学 气体分离 化学 纳米技术 组合化学 有机化学 催化作用 生物化学
作者
Mingzheng Zhang,Qiming Xie,Zhuozheng Wang,Wentao Zhang,Yawen Bo,Zhiying Zhang,Hao Li,Yi Luo,Qihan Gong,Shunning Li,Feng Pan
出处
期刊:Journal of Physical Chemistry Letters [American Chemical Society]
卷期号:15 (18): 4815-4822 被引量:4
标识
DOI:10.1021/acs.jpclett.4c00860
摘要

Metal-organic frameworks (MOFs) are potential candidates for gas-selective adsorbents for the separation of an ethylene/ethane mixture. To accelerate material discovery, high-throughput computational screening is a viable solution. However, classical force fields, which were widely employed in recent studies of MOF adsorbents, have been criticized for their failure to cover complicated interactions such as those involving π electrons. Herein, we demonstrate that machine learning force fields (MLFFs) trained on quantum-chemical reference data can overcome this difficulty. We have constructed a MLFF to accurately predict the adsorption energies of ethylene and ethane on the organic linkers of MOFs and discovered that the π electrons from both the ethylene molecule and the aromatic rings in the linkers could substantially influence the selectivity for gas adsorption. Four kinds of MOF linkers are identified as having promise for the separation of ethylene and ethane, and our results could also offer a new perspective on the design of MOF building blocks for diverse applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
支援未来发布了新的文献求助10
1秒前
岳岳发布了新的文献求助10
2秒前
2秒前
3秒前
242588完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
ai吃应助木南采纳,获得30
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
Banana完成签到,获得积分10
4秒前
4秒前
wanci应助科研通管家采纳,获得10
4秒前
明天发布了新的文献求助10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
非而者厚应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
且慢应助科研通管家采纳,获得60
5秒前
wanci应助科研通管家采纳,获得10
5秒前
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得30
5秒前
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473731
求助须知:如何正确求助?哪些是违规求助? 4575854
关于积分的说明 14354983
捐赠科研通 4503456
什么是DOI,文献DOI怎么找? 2467655
邀请新用户注册赠送积分活动 1455459
关于科研通互助平台的介绍 1429497