Hierarchical dynamic regulation of Saccharomyces cerevisiae for enhanced lutein biosynthesis

叶黄素 番茄红素 酿酒酵母 生物化学 类胡萝卜素 发酵 代谢工程 化学 酵母 生物 食品科学
作者
Qi Bian,Jiao Xue,Ye Chen,Hongwei Yu,Lidan Ye
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:120 (2): 536-552 被引量:20
标识
DOI:10.1002/bit.28286
摘要

Abstract Lutein, as a carotenoid with strong antioxidant capacity and an important component of macular pigment in the retina, has wide applications in pharmaceutical, food, feed, and cosmetics industries. Besides extraction from plant and algae, microbial fermentation using engineered cell factories to produce lutein has emerged as a promising route. However, intra‐pathway competition between the lycopene cyclases and the conflict between cell growth and production are two major challenges. In our previous study, de novo synthesis of lutein had been achieved in Saccharomyces cerevisiae by dividing the pathway into two stages (δ‐carotene formation and conversion) using temperature as the input signal to realize sequential cyclation of lycopene. However, lutein production was limited to microgram level, which is still too low to meet industrial demand. In this study, a dual‐signal hierarchical dynamic regulation system was developed and applied to divide lutein biosynthesis into three stages in response to glucose concentration and culture temperature. By placing the genes involved in δ‐carotene formation under the glucose‐responsive ADH2 promoter and genes involved in the conversion of δ‐carotene to lutein under temperature‐responsive GAL promoters, the growth‐production conflict and intra‐pathway competition were simultaneously resolved. Meanwhile, the rate‐limiting lycopene ε‐cyclation and carotene hydroxylation reactions were improved by screening for lycopene ε‐cyclase with higher activity and fine tuning of the P450 enzymes and their redox partners. Finally, a lutein titer of 19.92 mg/L (4.53 mg/g DCW) was obtained in shake‐flask cultures using the engineered yeast strain YLutein‐3S‐6, which is the highest lutein titer ever reported in heterologous production systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小月完成签到,获得积分10
刚刚
思源应助小米采纳,获得10
2秒前
丘比特应助Ciaoh采纳,获得10
3秒前
3秒前
生而为人向阳而生完成签到 ,获得积分10
4秒前
Yatpome完成签到,获得积分10
5秒前
7秒前
7秒前
qfchen0716网易完成签到,获得积分10
7秒前
微笑蜗牛完成签到 ,获得积分10
7秒前
开开发布了新的文献求助10
7秒前
momo完成签到,获得积分10
8秒前
Z01完成签到,获得积分10
8秒前
9秒前
王淳完成签到 ,获得积分10
11秒前
alive发布了新的文献求助10
12秒前
12秒前
YM完成签到,获得积分10
12秒前
14秒前
14秒前
852应助马希丹采纳,获得10
14秒前
duan完成签到 ,获得积分10
17秒前
Ciaoh发布了新的文献求助10
18秒前
小M发布了新的文献求助10
18秒前
18秒前
烟花应助剑与芳华采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
xiao123完成签到,获得积分10
19秒前
20秒前
情怀应助伊酒采纳,获得10
20秒前
小二郎应助kxx采纳,获得30
21秒前
一味地丶逞强完成签到,获得积分10
21秒前
寻道图强应助科研通管家采纳,获得30
21秒前
靓丽傲玉完成签到 ,获得积分10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
22秒前
planto发布了新的文献求助10
22秒前
田様应助科研通管家采纳,获得10
22秒前
不懈奋进应助科研通管家采纳,获得30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483942
求助须知:如何正确求助?哪些是违规求助? 4584399
关于积分的说明 14397356
捐赠科研通 4514299
什么是DOI,文献DOI怎么找? 2473912
邀请新用户注册赠送积分活动 1459930
关于科研通互助平台的介绍 1433260