Transition metal disulfide (MoTe2, MoSe2 and MoS2) were modified to improve NO2 gas sensitivity sensing

灵敏度(控制系统) 过渡金属 二硫键 材料科学 二硫化钼 金属 纳米技术 化学 有机化学 工程类 电子工程 生物化学 催化作用 冶金
作者
Long Lin,Zhiyan Feng,Zhongzhou Dong,Hualong Tao,Chencheng Hu
出处
期刊:Journal of Industrial and Engineering Chemistry [Elsevier]
卷期号:118: 533-543 被引量:46
标识
DOI:10.1016/j.jiec.2022.11.036
摘要

• MoTe 2 is a promising material for NO 2 detection. • The use of metal atom modified substrates greatly transformed the original properties. • The adsorption structures under different systems were explored as gas sensors and scavengers. For the detection of the more hazardous nitrogen oxides (NO 2 ), there is a need to find a readily fabricated, low-cost, high-performance two-dimensional material. This paper selected three transition metal disulphides (TMDs), MoTe 2 , MoSe 2 and MoS 2 , as materials for detecting NO 2 molecules by density flooding theory (DFT). The results show that the pure Mo(Te/Se/S) 2 monolayer has a poor detection effect on NO 2 molecules, and the modified monolayer exhibits better performance than its natural counterpart due to the significant electron hybridization between the dopant and the gas molecules after the introduction of metal atoms on the surface. It also leads to significant changes in electronic properties and work functions. The charge transfer mechanism based on Hirshfeld analysis shows that the charge transfer from the modified substrate to the NO 2 molecule improves the binding characteristics. And by discussing the adsorption structure, adsorption energy, local electron density, density of states, and frontier orbit theory, we show that MoTe 2 is a promising material for gas detection and removal, which will provide experimentalists with theoretical guidance for the application of Mo(Te/Se/S) 2 based sensing materials. Our work is important for predicting novel monosulfide sensing materials and extending the application of TMDs as chemical gas sensors in the field of environmental monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助风趣青槐采纳,获得10
2秒前
831143完成签到 ,获得积分0
3秒前
淡然寄瑶完成签到 ,获得积分10
4秒前
殷勤的紫槐应助吴雨胡采纳,获得200
5秒前
鲸与海完成签到,获得积分10
9秒前
11秒前
12秒前
完美世界应助王二毛采纳,获得10
12秒前
每天100次完成签到,获得积分10
12秒前
Jack完成签到 ,获得积分10
13秒前
滴滴滴滴滴滴滴关注了科研通微信公众号
14秒前
15秒前
顾矜应助每天100次采纳,获得20
16秒前
17秒前
沈格应助arizaki7采纳,获得10
20秒前
子韵完成签到,获得积分20
21秒前
21秒前
科研丁真发布了新的文献求助10
21秒前
21秒前
llk发布了新的文献求助10
22秒前
英吉利25发布了新的文献求助20
22秒前
风趣青槐发布了新的文献求助10
25秒前
天行马发布了新的文献求助10
25秒前
在德黑兰击剑的椰子完成签到,获得积分10
25秒前
烟花应助追寻的亦凝采纳,获得10
26秒前
27秒前
29秒前
29秒前
领导范儿应助小赵爱喝水采纳,获得10
31秒前
chenax发布了新的文献求助10
31秒前
情怀应助dracovu采纳,获得10
33秒前
闲时觅翠发布了新的文献求助10
34秒前
35秒前
36秒前
36秒前
子韵发布了新的文献求助10
40秒前
40秒前
41秒前
小冰发布了新的文献求助20
41秒前
紫苏完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869512
求助须知:如何正确求助?哪些是违规求助? 6452759
关于积分的说明 15661217
捐赠科研通 4985301
什么是DOI,文献DOI怎么找? 2688385
邀请新用户注册赠送积分活动 1630817
关于科研通互助平台的介绍 1588894