逆高斯分布
高斯过程
降级(电信)
过程(计算)
计算机科学
应用数学
数学
高斯分布
统计
算法
数学分析
物理
量子力学
分布(数学)
操作系统
电信
出处
期刊:Technometrics
[Taylor & Francis]
日期:2010-05-01
卷期号:52 (2): 188-197
被引量:349
标识
DOI:10.1198/tech.2009.08197
摘要
This paper studies the maximum likelihood estimation of a class of inverse Gaussian process models for degradation data. Both the subject-to-subject heterogeneity and covariate information can be incorporated into the model in a natural way. The EM algorithm is used to obtain the maximum likelihood estimators of the unknown parameters and the bootstrap is used to assess the variability of the maximum likelihood estimators. Simulations are used to validate the method. The model is fitted to laser data and corresponding goodness-of-fit tests are carried out. Failure time distributions in terms of degradation level passages are calculated and illustrated. The supplemental materials for this article are available online.
科研通智能强力驱动
Strongly Powered by AbleSci AI