Fixed Effects and Bias Due to the Incidental Parameters Problem in the Tobit Model

托比模型 估计员 罗伊特 计量经济学 普罗比特 有序概率单位 数学 统计 面板数据 固定效应模型 蒙特卡罗方法 Probit模型 差异(会计) 经济 会计
作者
William H. Greene
出处
期刊:Econometric Reviews 卷期号:23 (2): 125-147 被引量:543
标识
DOI:10.1081/etc-120039606
摘要

Abstract The maximum likelihood estimator (MLE) in nonlinear panel data models with fixed effects is widely understood (with a few exceptions) to be biased and inconsistent when T, the length of the panel, is small and fixed. However, there is surprisingly little theoretical or empirical evidence on the behavior of the estimator on which to base this conclusion. The received studies have focused almost exclusively on coefficient estimation in two binary choice models, the probit and logit models. In this note, we use Monte Carlo methods to examine the behavior of the MLE of the fixed effects tobit model. We find that the estimator's behavior is quite unlike that of the estimators of the binary choice models. Among our findings are that the location coefficients in the tobit model, unlike those in the probit and logit models, are unaffected by the “incidental parameters problem.” But, a surprising result related to the disturbance variance emerges instead – the finite sample bias appears here rather than in the slopes. This has implications for estimation of marginal effects and asymptotic standard errors, which are also examined in this paper. The effects are also examined for the probit and truncated regression models, extending the range of received results in the first of these beyond the widely cited biases in the coefficient estimators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CodeCraft应助木炭采纳,获得10
1秒前
xubozhao完成签到,获得积分10
1秒前
小资发布了新的文献求助10
3秒前
共享精神应助Yuu采纳,获得10
3秒前
所所应助弧线采纳,获得10
3秒前
思源应助坐亭下采纳,获得10
3秒前
科研通AI6应助mengyao采纳,获得10
4秒前
黑裤子熊发布了新的文献求助10
4秒前
港崽宝宝发布了新的文献求助10
5秒前
6秒前
坦率灵槐应助若初拾光采纳,获得10
6秒前
Cwx2020发布了新的文献求助10
7秒前
YJH应助CHANG采纳,获得30
7秒前
compud完成签到,获得积分20
7秒前
7秒前
陈开山发布了新的文献求助10
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
希望天下0贩的0应助huopppp采纳,获得10
9秒前
善学以致用应助huopppp采纳,获得10
9秒前
9秒前
Owen应助huopppp采纳,获得10
9秒前
顾矜应助huopppp采纳,获得10
9秒前
大个应助huopppp采纳,获得10
9秒前
Akim应助huopppp采纳,获得10
9秒前
10秒前
10秒前
11秒前
12秒前
12秒前
13秒前
14秒前
英姑应助努力毕业啊采纳,获得10
14秒前
14秒前
14秒前
pzh发布了新的文献求助10
14秒前
15秒前
归远发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648879
求助须知:如何正确求助?哪些是违规求助? 4777004
关于积分的说明 15046015
捐赠科研通 4807773
什么是DOI,文献DOI怎么找? 2571091
邀请新用户注册赠送积分活动 1527735
关于科研通互助平台的介绍 1486650