钙钛矿(结构)
材料科学
光电子学
介观物理学
钙钛矿太阳能电池
电致发光
太阳能电池
能量转换效率
重组
开路电压
炼金术中的太阳
光伏系统
图层(电子)
电压
纳米技术
化学
凝聚态物理
物理
电气工程
结晶学
工程类
基因
量子力学
生物化学
作者
Nevena Marinova,Wolfgang Tress,Robin Humphry‐Baker,M. Ibrahim Dar,Vladimir B. Bojinov,Shaik M. Zakeeruddin,Mohammad Khaja Nazeeruddin,Michaël Grätzel
出处
期刊:ACS Nano
[American Chemical Society]
日期:2015-03-14
卷期号:9 (4): 4200-4209
被引量:227
标识
DOI:10.1021/acsnano.5b00447
摘要
A tailored optimization of perovskite solar cells requires a detailed understanding of the processes limiting the device efficiency. Here, we study the role of the hole transport layer (HTL) spiro-MeOTAD and its thickness in a mesoscopic TiO2-based solar cell architecture. We find that a sufficiently thick (200 nm) HTL not only increases the charge carrier collection efficiency but also the light harvesting efficiency. This is due to an enhanced reflection of a smooth HTL/Au–electrode interface. The rough CH3NH3PbI3 perovskite surface requires an HTL thickness of >400 nm to avoid surface recombination and guarantee a high open-circuit voltage. Analyses of the electroluminescence efficiency and the diode ideality factor show that the open-circuit voltage becomes completely limited by trap-assisted recombination in the perovskite for a thick HTL. Thus, spiro-MeOTAD is a very good HTL choice from the device physics' point of view. The fill factor analyzed by the Suns-Voc method is not transport limited, but trap-recombination limited as well. Consequently, a further optimization of the device has to focus on defects in the polycrystalline perovskite film.
科研通智能强力驱动
Strongly Powered by AbleSci AI