FoodBase corpus: a new resource of annotated food entities

计算机科学 命名实体识别 自然语言处理 人工智能 注释 资源(消歧) 情报检索 计算机网络 经济 管理 任务(项目管理)
作者
Gorjan Popovski,Barbara Koroušić Seljak,Tome Eftimov
出处
期刊:Database [University of Oxford]
卷期号:2019 被引量:48
标识
DOI:10.1093/database/baz121
摘要

Abstract The existence of annotated text corpora is essential for the development of public health services and tools based on natural language processing (NLP) and text mining. Recently organized biomedical NLP shared tasks have provided annotated corpora related to different biomedical entities such as genes, phenotypes, drugs, diseases and chemical entities. These are needed to develop named-entity recognition (NER) models that are used for extracting entities from text and finding their relations. However, to the best of our knowledge, there are limited annotated corpora that provide information about food entities despite food and dietary management being an essential public health issue. Hence, we developed a new annotated corpus of food entities, named FoodBase. It was constructed using recipes extracted from Allrecipes, which is currently the largest food-focused social network. The recipes were selected from five categories: ‘Appetizers and Snacks’, ‘Breakfast and Lunch’, ‘Dessert’, ‘Dinner’ and ‘Drinks’. Semantic tags used for annotating food entities were selected from the Hansard corpus. To extract and annotate food entities, we applied a rule-based food NER method called FoodIE. Since FoodIE provides a weakly annotated corpus, by manually evaluating the obtained results on 1000 recipes, we created a gold standard of FoodBase. It consists of 12 844 food entity annotations describing 2105 unique food entities. Additionally, we provided a weakly annotated corpus on an additional 21 790 recipes. It consists of 274 053 food entity annotations, 13 079 of which are unique. The FoodBase corpus is necessary for developing corpus-based NER models for food science, as a new benchmark dataset for machine learning tasks such as multi-class classification, multi-label classification and hierarchical multi-label classification. FoodBase can be used for detecting semantic differences/similarities between food concepts, and after all we believe that it will open a new path for learning food embedding space that can be used in predictive studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sillyboy应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
joeqin完成签到,获得积分10
1秒前
4秒前
恒牙完成签到 ,获得积分10
9秒前
ywzwszl完成签到,获得积分10
11秒前
12秒前
13秒前
平静和满足完成签到 ,获得积分10
14秒前
wyx发布了新的文献求助200
19秒前
chen完成签到,获得积分10
25秒前
研友_LwX5Kn完成签到,获得积分10
31秒前
Leo完成签到 ,获得积分10
35秒前
laohu完成签到,获得积分10
38秒前
小小完成签到 ,获得积分10
44秒前
斯文的斩发布了新的文献求助10
45秒前
夺命倩倩儿完成签到,获得积分20
46秒前
46秒前
Noah完成签到 ,获得积分0
47秒前
Dr-Luo完成签到 ,获得积分10
49秒前
简奥斯汀完成签到 ,获得积分10
50秒前
51秒前
52秒前
独立江湖女完成签到 ,获得积分10
55秒前
四月完成签到 ,获得积分10
1分钟前
任性吐司完成签到 ,获得积分10
1分钟前
温水完成签到,获得积分10
1分钟前
1分钟前
虚心的皓轩完成签到 ,获得积分10
1分钟前
hbu123完成签到,获得积分10
1分钟前
12A完成签到,获得积分10
1分钟前
猫的毛完成签到 ,获得积分10
1分钟前
1分钟前
屹男完成签到 ,获得积分10
1分钟前
SPLjoker完成签到 ,获得积分10
1分钟前
baoxiaozhai完成签到 ,获得积分10
1分钟前
chenmeimei2012完成签到 ,获得积分10
1分钟前
完美世界应助栗先森采纳,获得10
1分钟前
迅速的念芹完成签到 ,获得积分10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4156249
求助须知:如何正确求助?哪些是违规求助? 3692101
关于积分的说明 11659013
捐赠科研通 3383220
什么是DOI,文献DOI怎么找? 1856340
邀请新用户注册赠送积分活动 917831
科研通“疑难数据库(出版商)”最低求助积分说明 831175