清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

FoodBase corpus: a new resource of annotated food entities

计算机科学 命名实体识别 自然语言处理 人工智能 注释 资源(消歧) 情报检索 计算机网络 管理 经济 任务(项目管理)
作者
Gorjan Popovski,Barbara Koroušić Seljak,Tome Eftimov
出处
期刊:Database [University of Oxford]
卷期号:2019 被引量:48
标识
DOI:10.1093/database/baz121
摘要

Abstract The existence of annotated text corpora is essential for the development of public health services and tools based on natural language processing (NLP) and text mining. Recently organized biomedical NLP shared tasks have provided annotated corpora related to different biomedical entities such as genes, phenotypes, drugs, diseases and chemical entities. These are needed to develop named-entity recognition (NER) models that are used for extracting entities from text and finding their relations. However, to the best of our knowledge, there are limited annotated corpora that provide information about food entities despite food and dietary management being an essential public health issue. Hence, we developed a new annotated corpus of food entities, named FoodBase. It was constructed using recipes extracted from Allrecipes, which is currently the largest food-focused social network. The recipes were selected from five categories: ‘Appetizers and Snacks’, ‘Breakfast and Lunch’, ‘Dessert’, ‘Dinner’ and ‘Drinks’. Semantic tags used for annotating food entities were selected from the Hansard corpus. To extract and annotate food entities, we applied a rule-based food NER method called FoodIE. Since FoodIE provides a weakly annotated corpus, by manually evaluating the obtained results on 1000 recipes, we created a gold standard of FoodBase. It consists of 12 844 food entity annotations describing 2105 unique food entities. Additionally, we provided a weakly annotated corpus on an additional 21 790 recipes. It consists of 274 053 food entity annotations, 13 079 of which are unique. The FoodBase corpus is necessary for developing corpus-based NER models for food science, as a new benchmark dataset for machine learning tasks such as multi-class classification, multi-label classification and hierarchical multi-label classification. FoodBase can be used for detecting semantic differences/similarities between food concepts, and after all we believe that it will open a new path for learning food embedding space that can be used in predictive studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
nolan完成签到 ,获得积分10
13秒前
16秒前
jjj发布了新的文献求助10
28秒前
gincle完成签到 ,获得积分10
32秒前
38秒前
42秒前
1分钟前
靓丽的熠彤完成签到,获得积分10
1分钟前
SiboN完成签到,获得积分10
1分钟前
1分钟前
方白秋完成签到,获得积分10
1分钟前
2分钟前
仁爱的雁芙完成签到,获得积分10
2分钟前
尘染完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
zlh发布了新的文献求助10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
幽默的太阳完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
慕青应助gszy1975采纳,获得10
6分钟前
6分钟前
滕皓轩完成签到 ,获得积分20
6分钟前
6分钟前
zxcvbnm完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
KINGAZX完成签到 ,获得积分10
7分钟前
7分钟前
丘比特应助伴妳长路采纳,获得20
8分钟前
菠萝包完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4695539
求助须知:如何正确求助?哪些是违规求助? 4065450
关于积分的说明 12569107
捐赠科研通 3764625
什么是DOI,文献DOI怎么找? 2079119
邀请新用户注册赠送积分活动 1107401
科研通“疑难数据库(出版商)”最低求助积分说明 985700