Equilibrium optimizer: A novel optimization algorithm

粒子群优化 数学优化 遗传算法 最大值和最小值 算法 计算机科学 数学 数学分析
作者
Afshin Faramarzi,Mohammad Heidarinejad,Brent Stephens,Seyedali Mirjalili
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:191: 105190-105190 被引量:1826
标识
DOI:10.1016/j.knosys.2019.105190
摘要

This paper presents a novel, optimization algorithm called Equilibrium Optimizer (EO), inspired by control volume mass balance models used to estimate both dynamic and equilibrium states. In EO, each particle (solution) with its concentration (position) acts as a search agent. The search agents randomly update their concentration with respect to best-so-far solutions, namely equilibrium candidates, to finally reach to the equilibrium state (optimal result). A well-defined “generation rate” term is proved to invigorate EO’s ability in exploration, exploitation, and local minima avoidance. The proposed algorithm is benchmarked with 58 unimodal, multimodal, and composition functions and three engineering application problems. Results of EO are compared to three categories of existing optimization methods, including: (i) the most well-known meta-heuristics, including Genetic Algorithm (GA), Particle Swarm Optimization (PSO); (ii) recently developed algorithms, including Grey Wolf Optimizer (GWO), Gravitational Search Algorithm (GSA), and Salp Swarm Algorithm (SSA); and (iii) high performance optimizers, including CMA-ES, SHADE, and LSHADE-SPACMA. Using average rank of Friedman test, for all 58 mathematical functions EO is able to outperform PSO, GWO, GA, GSA, SSA, and CMA-ES by 60%, 69%, 94%, 96%, 77%, and 64%, respectively, while it is outperformed by SHADE and LSHADE-SPACMA by 24% and 27%, respectively. The Bonferroni–Dunnand Holm’s tests for all functions showed that EO is significantly a better algorithm than PSO, GWO, GA, GSA, SSA and CMA-ES while its performance is statistically similar to SHADE and LSHADE-SPACMA. The source code of EO is publicly availabe at https://github.com/afshinfaramarzi/Equilibrium-Optimizer, http://built-envi.com/portfolio/equilibrium-optimizer/ and http://www.alimirjalili.com/SourceCodes/EOcode.zip.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕雅发布了新的文献求助100
1秒前
堃kun发布了新的文献求助10
2秒前
2秒前
拼搏灵安完成签到 ,获得积分10
3秒前
4秒前
宇少爱学习哟完成签到,获得积分10
4秒前
4秒前
兴奋大开发布了新的文献求助10
5秒前
chenzao完成签到 ,获得积分10
6秒前
6秒前
赵小麦完成签到,获得积分20
6秒前
JY发布了新的文献求助10
7秒前
酷酷完成签到 ,获得积分10
8秒前
晨曦发布了新的文献求助10
8秒前
8秒前
张凤发布了新的文献求助10
9秒前
赘婿应助堃kun采纳,获得10
10秒前
小米粥完成签到,获得积分10
10秒前
9527发布了新的文献求助150
13秒前
领导范儿应助兴奋大开采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
Treasure98发布了新的文献求助10
14秒前
无聊科研应助Dr.Mary采纳,获得10
15秒前
大水发布了新的文献求助10
16秒前
herschelwu完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
桐桐应助史蓓蓓采纳,获得10
17秒前
18秒前
djsj完成签到,获得积分10
19秒前
无花果应助风中的丝袜采纳,获得30
20秒前
wanci应助从容的从凝采纳,获得10
21秒前
Lucien发布了新的文献求助10
21秒前
22秒前
张凤发布了新的文献求助10
22秒前
23秒前
斯文败类应助qaqa采纳,获得10
23秒前
24秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Learning to Listen, Listening to Learn 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871424
求助须知:如何正确求助?哪些是违规求助? 3413505
关于积分的说明 10685304
捐赠科研通 3137965
什么是DOI,文献DOI怎么找? 1731332
邀请新用户注册赠送积分活动 834756
科研通“疑难数据库(出版商)”最低求助积分说明 781332