颗粒过滤器
跟踪(教育)
电池(电)
控制理论(社会学)
估计员
滤波器(信号处理)
锂离子电池
计算机科学
粒子(生态学)
热的
荷电状态
非线性系统
锂(药物)
物理
数学
人工智能
功率(物理)
医学
心理学
教育学
统计
海洋学
控制(管理)
量子力学
内分泌学
气象学
计算机视觉
地质学
作者
Chunyu Wang,Naxin Cui,Changlong Li
出处
期刊:DEStech Transactions on Environment, Energy and Earth Science
[DEStech Publications]
日期:2019-10-31
卷期号: (iceee)
标识
DOI:10.12783/dteees/iceee2019/31802
摘要
Accurate estimation of battery state is crucial for battery management system. Lithium-ion battery is a complex electrochemical system with coupled electrothermal characteristics and strong nonlinearity. Therefore a state estimation method based on electrothermal model and strong tracking particle filter is proposed in this article. The calorimetric method is employed to realize fast identification for thermal model parameter. By introducing strong tracking filter into particle filter, an estimator based on strong tracking particle filter is proposed to improve the estimation accuracy and tracking capability of saltatory state. The simulation and experiments are conducted to verify the performance of proposed method under dynamic characterization schedules.
科研通智能强力驱动
Strongly Powered by AbleSci AI