Phenotyping of Corn Plants Using Unmanned Aerial Vehicle (UAV) Images

均方误差 天蓬 叶面积指数 遥感 环境科学 农学 数学 统计 地理 生物 生态学
作者
Wei Su,Mingzheng Zhang,Dahong Bian,Zhe Liu,Jianxi Huang,Wei Wang,Jiayu Wu,Hao Guo
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:11 (17): 2021-2021 被引量:88
标识
DOI:10.3390/rs11172021
摘要

Phenotyping provides important support for corn breeding. Unfortunately, the rapid detection of phenotypes has been the major limiting factor in estimating and predicting the outcomes of breeding programs. This study was focused on the potential of phenotyping to support corn breeding using unmanned aerial vehicle (UAV) images, aiming at mining and deepening UAV techniques for comparing phenotypes and screening new corn varieties. Two geometric traits (plant height, canopy leaf area index (LAI)) and one lodging resistance trait (lodging area) were estimated in this study. It was found that stereoscopic and photogrammetric methods were promising ways to calculate a digital surface model (DSM) for estimating corn plant height from UAV images, with R2 = 0.7833 (p < 0.001) and a root mean square error (RMSE) = 0.1677. In addition to a height estimation, the height variation was analyzed for depicting and validating the corn canopy uniformity stability for different varieties. For the lodging area estimation, the normalized DSM (nDSM) method was more promising than the gray-level co-occurrence matrix (GLCM) textural features method. The estimation error using the nDSM ranged from 0.8% to 5.3%, and the estimation error using the GLCM ranged from 10.0% to 16.2%. Associations between the height estimation and lodging area estimation were done to find the corn varieties with optimal plant heights and lodging resistance. For the LAI estimation, the physical radiative transfer PROSAIL model offered both an accurate and robust estimation performance both at the middle (R2 = 0.7490, RMSE = 0.3443) and later growing stages (R2 = 0.7450, RMSE = 0.3154). What was more exciting was that the estimated sequential time series LAIs revealed a corn variety with poor resistance to lodging in a study area of Baogaofeng Farm. Overall, UAVs appear to provide a promising method to support phenotyping for crop breeding, and the phenotyping of corn breeding in this study validated this application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raojas发布了新的文献求助10
刚刚
科目三应助多情的鼠标采纳,获得10
刚刚
123完成签到,获得积分10
1秒前
2秒前
red233完成签到,获得积分10
2秒前
2秒前
zhaof完成签到 ,获得积分10
3秒前
3秒前
3秒前
RENZ发布了新的文献求助10
3秒前
123发布了新的文献求助30
3秒前
3Hboy完成签到,获得积分10
3秒前
速度完成签到,获得积分10
4秒前
4秒前
5秒前
努力的研究生完成签到,获得积分10
6秒前
6秒前
燕返发布了新的文献求助10
6秒前
赘婿应助11220采纳,获得10
6秒前
6秒前
搜集达人应助HMS_Illustrious采纳,获得10
7秒前
7秒前
7秒前
9秒前
牛马科研完成签到,获得积分10
9秒前
伶俐凝珍发布了新的文献求助10
9秒前
日常卖命发布了新的文献求助10
9秒前
wangcaoyi667发布了新的文献求助10
10秒前
科研通AI5应助huadao采纳,获得10
10秒前
XY完成签到,获得积分10
11秒前
12秒前
IRer79发布了新的文献求助10
12秒前
serein发布了新的文献求助10
13秒前
满意尔安完成签到,获得积分0
13秒前
YLS完成签到,获得积分10
13秒前
13秒前
14秒前
彩虹糖关注了科研通微信公众号
14秒前
14秒前
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813863
求助须知:如何正确求助?哪些是违规求助? 3358242
关于积分的说明 10393295
捐赠科研通 3075577
什么是DOI,文献DOI怎么找? 1689423
邀请新用户注册赠送积分活动 812845
科研通“疑难数据库(出版商)”最低求助积分说明 767387