Deep learning for autonomous ship-oriented small ship detection

人工智能 深度学习 目标检测 计算机科学 卷积神经网络 发电机(电路理论) 鉴别器 人工神经网络 机器学习 雷达 任务(项目管理) 模式识别(心理学) 计算机视觉 实时计算 工程类 探测器 电信 功率(物理) 物理 系统工程 量子力学
作者
Zhijun Chen,Depeng Chen,Yishi Zhang,Xiaozhao Cheng,Mingyang Zhang,Chaozhong Wu
出处
期刊:Safety Science [Elsevier BV]
卷期号:130: 104812-104812 被引量:183
标识
DOI:10.1016/j.ssci.2020.104812
摘要

• A deep learning method is proposed for autonomous ship-oriented small ship detection. • A modified Generative Adversarial Network is applied for training data augmentation. • An improved YOLO v2 algorithm is used for small ship detection. • Extensive experiments are conducted to show the effectiveness of the proposed method. Small ship detection is an important topic in autonomous ship technology and plays an essential role in shipping safety. Since traditional object detection techniques based on the shipborne radar are not qualified for the task of near and small ship detection, deep learning-based image recognition methods based on video surveillance systems can be naturally utilized on autonomous vessels to effectively detect near and small ships. However, a limited number of real-world samples of small ships may fail to train a learning method that can accurately detect small ships in most cases. To address this, a novel hybrid deep learning method that combines a modified Generative Adversarial Network (GAN) and a Convolutional Neural Network (CNN)-based detection approach is proposed for small ship detection. Specifically, a Gaussian Mixture Wasserstein GAN with Gradient Penalty is utilized to first directly generate sufficient informative artificial samples of small ships based on the zero-sum game between a generator and a discriminator, and then an improved CNN-based real-time detection method is trained on both the original and the generated data for accurate small ship detection. Experimental results show that the proposed deep learning method (a) is competent to generate sufficient informative small ship samples and (b) can obtain significantly improved and robust results of small ship detection. The results also indicate that the proposed method can be effectively applied to ensuring autonomous ship safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sylwren发布了新的文献求助10
1秒前
JJJ发布了新的文献求助10
1秒前
2秒前
GONGLI完成签到 ,获得积分10
2秒前
mufcyang发布了新的文献求助10
3秒前
Lily发布了新的文献求助10
3秒前
酷波er应助诚心茈采纳,获得10
3秒前
景行发布了新的文献求助10
4秒前
4秒前
xiaojingling完成签到,获得积分10
4秒前
5秒前
6秒前
7秒前
7秒前
水水的发布了新的文献求助10
8秒前
学术蝗虫发布了新的文献求助10
8秒前
浮游应助刻苦的豌豆采纳,获得10
9秒前
柒丶完成签到,获得积分10
9秒前
12345完成签到,获得积分10
9秒前
miao完成签到,获得积分10
9秒前
谈舒怡发布了新的文献求助10
10秒前
95发布了新的文献求助10
11秒前
十八发布了新的文献求助10
11秒前
JZ133发布了新的文献求助10
11秒前
钮卿完成签到,获得积分10
12秒前
12秒前
13秒前
科研通AI6应助jiaming采纳,获得30
13秒前
13秒前
善学以致用应助Lily采纳,获得10
15秒前
情怀应助绝尘采纳,获得10
16秒前
学术蝗虫完成签到,获得积分10
16秒前
谈舒怡完成签到,获得积分10
17秒前
Kevin Huang完成签到,获得积分10
17秒前
bkagyin应助JJJ采纳,获得30
18秒前
18秒前
18秒前
19秒前
19秒前
95完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061583
求助须知:如何正确求助?哪些是违规求助? 4285608
关于积分的说明 13355044
捐赠科研通 4103396
什么是DOI,文献DOI怎么找? 2246696
邀请新用户注册赠送积分活动 1252432
关于科研通互助平台的介绍 1183294