Combining convolutional neural networks and on-line Raman spectroscopy for monitoring the Cornu Caprae Hircus hydrolysis process

超参数 卷积神经网络 偏最小二乘回归 人工智能 校准 计算机科学 拉曼光谱 化学 人工神经网络 机器学习 生物系统 模式识别(心理学) 统计 数学 物理 光学 生物
作者
Xu Yan,Sheng Zhang,Hao Fu,Haibin Qu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:226: 117589-117589 被引量:55
标识
DOI:10.1016/j.saa.2019.117589
摘要

Cornu Caprae Hircus (goat horn, GH) is one of the frequently used medicinal animal horns in traditional Chinese medicine (TCM). Hydrolysis is one of the key steps for GH pretreatment in pharmaceutical manufacturing. However, the physicochemical complexity of the hydrolysis samples imposes a challenge for hydrolysis process analysis and monitoring. In this study, convolutional neural networks (CNNs), one of the most popular deep learning methods, were used to develop quantitative calibration models based on on-line Raman spectroscopy for monitoring the GH hydrolysis process. Partial least squares (PLS) calibration models were also developed for model performance comparison. For CNN modeling, raw Raman spectra were used as inputs and hyperparameters in the CNN structure were optimized. Results show for four of the seven analytes, the optimized CNN models using raw spectra as inputs outperform the optimized PLS models developed with preprocessed spectra. Therefore, compared with the commonly used PLS algorithm, CNN modeling is also a practicable regression method and can be employed for the analytical purpose of this study. Models with better performance are expected to be obtained by improving the CNN model structure and using more effective hyperparameter optimization approaches in further studies. To the best of our knowledge, this is the first reported case study of combining CNNs and on-line Raman spectroscopy for a regression task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助参上采纳,获得10
2秒前
2秒前
Slence发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
Mxue发布了新的文献求助10
3秒前
xiaojian_291完成签到,获得积分10
3秒前
MQ&FF完成签到,获得积分0
3秒前
4秒前
今后应助霍三石采纳,获得10
4秒前
zhangyue7777完成签到,获得积分10
4秒前
大姿兰卡眼睛完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
5秒前
小青椒应助勤劳的斑马采纳,获得30
5秒前
Orange应助莫华龙采纳,获得10
6秒前
zfy发布了新的文献求助10
6秒前
7秒前
haby发布了新的文献求助10
7秒前
8秒前
woshiwuziq发布了新的文献求助10
8秒前
李汀发布了新的文献求助10
8秒前
Ava应助科研通管家采纳,获得10
9秒前
9秒前
zheng发布了新的文献求助10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
Meyako应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
zhanwenlin完成签到,获得积分10
9秒前
liushikai应助科研通管家采纳,获得20
9秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
完美世界应助七七采纳,获得10
10秒前
萌兰发布了新的文献求助10
10秒前
10秒前
贪玩的机器猫给庸俗的求助进行了留言
10秒前
10秒前
Lucas应助niniyiya采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
一國兩制與國家安全 : 香港國安法透視 350
Understanding Jurisprudence: An Introduction to Legal Theory (6th edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4272552
求助须知:如何正确求助?哪些是违规求助? 3802333
关于积分的说明 11915235
捐赠科研通 3449038
什么是DOI,文献DOI怎么找? 1891564
邀请新用户注册赠送积分活动 942250
科研通“疑难数据库(出版商)”最低求助积分说明 846244